Delete tools/rvc_for_realtime.py
Browse files- tools/rvc_for_realtime.py +0 -445
tools/rvc_for_realtime.py
DELETED
@@ -1,445 +0,0 @@
|
|
1 |
-
from io import BytesIO
|
2 |
-
import os
|
3 |
-
import pickle
|
4 |
-
import sys
|
5 |
-
import traceback
|
6 |
-
from infer.lib import jit
|
7 |
-
from infer.lib.jit.get_synthesizer import get_synthesizer
|
8 |
-
from time import time as ttime
|
9 |
-
import fairseq
|
10 |
-
import faiss
|
11 |
-
import numpy as np
|
12 |
-
import parselmouth
|
13 |
-
import pyworld
|
14 |
-
import scipy.signal as signal
|
15 |
-
import torch
|
16 |
-
import torch.nn as nn
|
17 |
-
import torch.nn.functional as F
|
18 |
-
import torchcrepe
|
19 |
-
|
20 |
-
from infer.lib.infer_pack.models import (
|
21 |
-
SynthesizerTrnMs256NSFsid,
|
22 |
-
SynthesizerTrnMs256NSFsid_nono,
|
23 |
-
SynthesizerTrnMs768NSFsid,
|
24 |
-
SynthesizerTrnMs768NSFsid_nono,
|
25 |
-
)
|
26 |
-
|
27 |
-
now_dir = os.getcwd()
|
28 |
-
sys.path.append(now_dir)
|
29 |
-
from multiprocessing import Manager as M
|
30 |
-
|
31 |
-
from configs.config import Config
|
32 |
-
|
33 |
-
# config = Config()
|
34 |
-
|
35 |
-
mm = M()
|
36 |
-
|
37 |
-
|
38 |
-
def printt(strr, *args):
|
39 |
-
if len(args) == 0:
|
40 |
-
print(strr)
|
41 |
-
else:
|
42 |
-
print(strr % args)
|
43 |
-
|
44 |
-
|
45 |
-
# config.device=torch.device("cpu")########强制cpu测试
|
46 |
-
# config.is_half=False########强制cpu测试
|
47 |
-
class RVC:
|
48 |
-
def __init__(
|
49 |
-
self,
|
50 |
-
key,
|
51 |
-
pth_path,
|
52 |
-
index_path,
|
53 |
-
index_rate,
|
54 |
-
n_cpu,
|
55 |
-
inp_q,
|
56 |
-
opt_q,
|
57 |
-
config: Config,
|
58 |
-
last_rvc=None,
|
59 |
-
) -> None:
|
60 |
-
"""
|
61 |
-
初始化
|
62 |
-
"""
|
63 |
-
try:
|
64 |
-
if config.dml == True:
|
65 |
-
|
66 |
-
def forward_dml(ctx, x, scale):
|
67 |
-
ctx.scale = scale
|
68 |
-
res = x.clone().detach()
|
69 |
-
return res
|
70 |
-
|
71 |
-
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
72 |
-
# global config
|
73 |
-
self.config = config
|
74 |
-
self.inp_q = inp_q
|
75 |
-
self.opt_q = opt_q
|
76 |
-
# device="cpu"########强制cpu测试
|
77 |
-
self.device = config.device
|
78 |
-
self.f0_up_key = key
|
79 |
-
self.f0_min = 50
|
80 |
-
self.f0_max = 1100
|
81 |
-
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
82 |
-
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
83 |
-
self.n_cpu = n_cpu
|
84 |
-
self.use_jit = self.config.use_jit
|
85 |
-
self.is_half = config.is_half
|
86 |
-
|
87 |
-
if index_rate != 0:
|
88 |
-
self.index = faiss.read_index(index_path)
|
89 |
-
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
90 |
-
printt("Index search enabled")
|
91 |
-
self.pth_path: str = pth_path
|
92 |
-
self.index_path = index_path
|
93 |
-
self.index_rate = index_rate
|
94 |
-
self.cache_pitch: torch.Tensor = torch.zeros(
|
95 |
-
1024, device=self.device, dtype=torch.long
|
96 |
-
)
|
97 |
-
self.cache_pitchf = torch.zeros(
|
98 |
-
1024, device=self.device, dtype=torch.float32
|
99 |
-
)
|
100 |
-
|
101 |
-
if last_rvc is None:
|
102 |
-
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
103 |
-
["assets/hubert/hubert_base.pt"],
|
104 |
-
suffix="",
|
105 |
-
)
|
106 |
-
hubert_model = models[0]
|
107 |
-
hubert_model = hubert_model.to(self.device)
|
108 |
-
if self.is_half:
|
109 |
-
hubert_model = hubert_model.half()
|
110 |
-
else:
|
111 |
-
hubert_model = hubert_model.float()
|
112 |
-
hubert_model.eval()
|
113 |
-
self.model = hubert_model
|
114 |
-
else:
|
115 |
-
self.model = last_rvc.model
|
116 |
-
|
117 |
-
self.net_g: nn.Module = None
|
118 |
-
|
119 |
-
def set_default_model():
|
120 |
-
self.net_g, cpt = get_synthesizer(self.pth_path, self.device)
|
121 |
-
self.tgt_sr = cpt["config"][-1]
|
122 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
123 |
-
self.if_f0 = cpt.get("f0", 1)
|
124 |
-
self.version = cpt.get("version", "v1")
|
125 |
-
if self.is_half:
|
126 |
-
self.net_g = self.net_g.half()
|
127 |
-
else:
|
128 |
-
self.net_g = self.net_g.float()
|
129 |
-
|
130 |
-
def set_jit_model():
|
131 |
-
jit_pth_path = self.pth_path.rstrip(".pth")
|
132 |
-
jit_pth_path += ".half.jit" if self.is_half else ".jit"
|
133 |
-
reload = False
|
134 |
-
if str(self.device) == "cuda":
|
135 |
-
self.device = torch.device("cuda:0")
|
136 |
-
if os.path.exists(jit_pth_path):
|
137 |
-
cpt = jit.load(jit_pth_path)
|
138 |
-
model_device = cpt["device"]
|
139 |
-
if model_device != str(self.device):
|
140 |
-
reload = True
|
141 |
-
else:
|
142 |
-
reload = True
|
143 |
-
|
144 |
-
if reload:
|
145 |
-
cpt = jit.synthesizer_jit_export(
|
146 |
-
self.pth_path,
|
147 |
-
"script",
|
148 |
-
None,
|
149 |
-
device=self.device,
|
150 |
-
is_half=self.is_half,
|
151 |
-
)
|
152 |
-
|
153 |
-
self.tgt_sr = cpt["config"][-1]
|
154 |
-
self.if_f0 = cpt.get("f0", 1)
|
155 |
-
self.version = cpt.get("version", "v1")
|
156 |
-
self.net_g = torch.jit.load(
|
157 |
-
BytesIO(cpt["model"]), map_location=self.device
|
158 |
-
)
|
159 |
-
self.net_g.infer = self.net_g.forward
|
160 |
-
self.net_g.eval().to(self.device)
|
161 |
-
|
162 |
-
def set_synthesizer():
|
163 |
-
if self.use_jit and not config.dml:
|
164 |
-
if self.is_half and "cpu" in str(self.device):
|
165 |
-
printt(
|
166 |
-
"Use default Synthesizer model. \
|
167 |
-
Jit is not supported on the CPU for half floating point"
|
168 |
-
)
|
169 |
-
set_default_model()
|
170 |
-
else:
|
171 |
-
set_jit_model()
|
172 |
-
else:
|
173 |
-
set_default_model()
|
174 |
-
|
175 |
-
if last_rvc is None or last_rvc.pth_path != self.pth_path:
|
176 |
-
set_synthesizer()
|
177 |
-
else:
|
178 |
-
self.tgt_sr = last_rvc.tgt_sr
|
179 |
-
self.if_f0 = last_rvc.if_f0
|
180 |
-
self.version = last_rvc.version
|
181 |
-
self.is_half = last_rvc.is_half
|
182 |
-
if last_rvc.use_jit != self.use_jit:
|
183 |
-
set_synthesizer()
|
184 |
-
else:
|
185 |
-
self.net_g = last_rvc.net_g
|
186 |
-
|
187 |
-
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
|
188 |
-
self.model_rmvpe = last_rvc.model_rmvpe
|
189 |
-
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
|
190 |
-
self.device_fcpe = last_rvc.device_fcpe
|
191 |
-
self.model_fcpe = last_rvc.model_fcpe
|
192 |
-
except:
|
193 |
-
printt(traceback.format_exc())
|
194 |
-
|
195 |
-
def change_key(self, new_key):
|
196 |
-
self.f0_up_key = new_key
|
197 |
-
|
198 |
-
def change_index_rate(self, new_index_rate):
|
199 |
-
if new_index_rate != 0 and self.index_rate == 0:
|
200 |
-
self.index = faiss.read_index(self.index_path)
|
201 |
-
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
202 |
-
printt("Index search enabled")
|
203 |
-
self.index_rate = new_index_rate
|
204 |
-
|
205 |
-
def get_f0_post(self, f0):
|
206 |
-
if not torch.is_tensor(f0):
|
207 |
-
f0 = torch.from_numpy(f0)
|
208 |
-
f0 = f0.float().to(self.device).squeeze()
|
209 |
-
f0_mel = 1127 * torch.log(1 + f0 / 700)
|
210 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
211 |
-
self.f0_mel_max - self.f0_mel_min
|
212 |
-
) + 1
|
213 |
-
f0_mel[f0_mel <= 1] = 1
|
214 |
-
f0_mel[f0_mel > 255] = 255
|
215 |
-
f0_coarse = torch.round(f0_mel).long()
|
216 |
-
return f0_coarse, f0
|
217 |
-
|
218 |
-
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
219 |
-
n_cpu = int(n_cpu)
|
220 |
-
if method == "crepe":
|
221 |
-
return self.get_f0_crepe(x, f0_up_key)
|
222 |
-
if method == "rmvpe":
|
223 |
-
return self.get_f0_rmvpe(x, f0_up_key)
|
224 |
-
if method == "fcpe":
|
225 |
-
return self.get_f0_fcpe(x, f0_up_key)
|
226 |
-
x = x.cpu().numpy()
|
227 |
-
if method == "pm":
|
228 |
-
p_len = x.shape[0] // 160 + 1
|
229 |
-
f0_min = 65
|
230 |
-
l_pad = int(np.ceil(1.5 / f0_min * 16000))
|
231 |
-
r_pad = l_pad + 1
|
232 |
-
s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac(
|
233 |
-
time_step=0.01,
|
234 |
-
voicing_threshold=0.6,
|
235 |
-
pitch_floor=f0_min,
|
236 |
-
pitch_ceiling=1100,
|
237 |
-
)
|
238 |
-
assert np.abs(s.t1 - 1.5 / f0_min) < 0.001
|
239 |
-
f0 = s.selected_array["frequency"]
|
240 |
-
if len(f0) < p_len:
|
241 |
-
f0 = np.pad(f0, (0, p_len - len(f0)))
|
242 |
-
f0 = f0[:p_len]
|
243 |
-
f0 *= pow(2, f0_up_key / 12)
|
244 |
-
return self.get_f0_post(f0)
|
245 |
-
if n_cpu == 1:
|
246 |
-
f0, t = pyworld.harvest(
|
247 |
-
x.astype(np.double),
|
248 |
-
fs=16000,
|
249 |
-
f0_ceil=1100,
|
250 |
-
f0_floor=50,
|
251 |
-
frame_period=10,
|
252 |
-
)
|
253 |
-
f0 = signal.medfilt(f0, 3)
|
254 |
-
f0 *= pow(2, f0_up_key / 12)
|
255 |
-
return self.get_f0_post(f0)
|
256 |
-
f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64)
|
257 |
-
length = len(x)
|
258 |
-
part_length = 160 * ((length // 160 - 1) // n_cpu + 1)
|
259 |
-
n_cpu = (length // 160 - 1) // (part_length // 160) + 1
|
260 |
-
ts = ttime()
|
261 |
-
res_f0 = mm.dict()
|
262 |
-
for idx in range(n_cpu):
|
263 |
-
tail = part_length * (idx + 1) + 320
|
264 |
-
if idx == 0:
|
265 |
-
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
266 |
-
else:
|
267 |
-
self.inp_q.put(
|
268 |
-
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
269 |
-
)
|
270 |
-
while 1:
|
271 |
-
res_ts = self.opt_q.get()
|
272 |
-
if res_ts == ts:
|
273 |
-
break
|
274 |
-
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
275 |
-
for idx, f0 in enumerate(f0s):
|
276 |
-
if idx == 0:
|
277 |
-
f0 = f0[:-3]
|
278 |
-
elif idx != n_cpu - 1:
|
279 |
-
f0 = f0[2:-3]
|
280 |
-
else:
|
281 |
-
f0 = f0[2:]
|
282 |
-
f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = (
|
283 |
-
f0
|
284 |
-
)
|
285 |
-
f0bak = signal.medfilt(f0bak, 3)
|
286 |
-
f0bak *= pow(2, f0_up_key / 12)
|
287 |
-
return self.get_f0_post(f0bak)
|
288 |
-
|
289 |
-
def get_f0_crepe(self, x, f0_up_key):
|
290 |
-
if "privateuseone" in str(
|
291 |
-
self.device
|
292 |
-
): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
|
293 |
-
return self.get_f0(x, f0_up_key, 1, "fcpe")
|
294 |
-
# printt("using crepe,device:%s"%self.device)
|
295 |
-
f0, pd = torchcrepe.predict(
|
296 |
-
x.unsqueeze(0).float(),
|
297 |
-
16000,
|
298 |
-
160,
|
299 |
-
self.f0_min,
|
300 |
-
self.f0_max,
|
301 |
-
"full",
|
302 |
-
batch_size=512,
|
303 |
-
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
|
304 |
-
device=self.device,
|
305 |
-
return_periodicity=True,
|
306 |
-
)
|
307 |
-
pd = torchcrepe.filter.median(pd, 3)
|
308 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
309 |
-
f0[pd < 0.1] = 0
|
310 |
-
f0 *= pow(2, f0_up_key / 12)
|
311 |
-
return self.get_f0_post(f0)
|
312 |
-
|
313 |
-
def get_f0_rmvpe(self, x, f0_up_key):
|
314 |
-
if hasattr(self, "model_rmvpe") == False:
|
315 |
-
from infer.lib.rmvpe import RMVPE
|
316 |
-
|
317 |
-
printt("Loading rmvpe model")
|
318 |
-
self.model_rmvpe = RMVPE(
|
319 |
-
"assets/rmvpe/rmvpe.pt",
|
320 |
-
is_half=self.is_half,
|
321 |
-
device=self.device,
|
322 |
-
use_jit=self.config.use_jit,
|
323 |
-
)
|
324 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
325 |
-
f0 *= pow(2, f0_up_key / 12)
|
326 |
-
return self.get_f0_post(f0)
|
327 |
-
|
328 |
-
def get_f0_fcpe(self, x, f0_up_key):
|
329 |
-
if hasattr(self, "model_fcpe") == False:
|
330 |
-
from torchfcpe import spawn_bundled_infer_model
|
331 |
-
|
332 |
-
printt("Loading fcpe model")
|
333 |
-
if "privateuseone" in str(self.device):
|
334 |
-
self.device_fcpe = "cpu"
|
335 |
-
else:
|
336 |
-
self.device_fcpe = self.device
|
337 |
-
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
|
338 |
-
f0 = self.model_fcpe.infer(
|
339 |
-
x.to(self.device_fcpe).unsqueeze(0).float(),
|
340 |
-
sr=16000,
|
341 |
-
decoder_mode="local_argmax",
|
342 |
-
threshold=0.006,
|
343 |
-
)
|
344 |
-
f0 *= pow(2, f0_up_key / 12)
|
345 |
-
return self.get_f0_post(f0)
|
346 |
-
|
347 |
-
def infer(
|
348 |
-
self,
|
349 |
-
input_wav: torch.Tensor,
|
350 |
-
block_frame_16k,
|
351 |
-
skip_head,
|
352 |
-
return_length,
|
353 |
-
f0method,
|
354 |
-
) -> np.ndarray:
|
355 |
-
t1 = ttime()
|
356 |
-
with torch.no_grad():
|
357 |
-
if self.config.is_half:
|
358 |
-
feats = input_wav.half().view(1, -1)
|
359 |
-
else:
|
360 |
-
feats = input_wav.float().view(1, -1)
|
361 |
-
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
362 |
-
inputs = {
|
363 |
-
"source": feats,
|
364 |
-
"padding_mask": padding_mask,
|
365 |
-
"output_layer": 9 if self.version == "v1" else 12,
|
366 |
-
}
|
367 |
-
logits = self.model.extract_features(**inputs)
|
368 |
-
feats = (
|
369 |
-
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
370 |
-
)
|
371 |
-
feats = torch.cat((feats, feats[:, -1:, :]), 1)
|
372 |
-
t2 = ttime()
|
373 |
-
try:
|
374 |
-
if hasattr(self, "index") and self.index_rate != 0:
|
375 |
-
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32")
|
376 |
-
score, ix = self.index.search(npy, k=8)
|
377 |
-
if (ix >= 0).all():
|
378 |
-
weight = np.square(1 / score)
|
379 |
-
weight /= weight.sum(axis=1, keepdims=True)
|
380 |
-
npy = np.sum(
|
381 |
-
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
|
382 |
-
)
|
383 |
-
if self.config.is_half:
|
384 |
-
npy = npy.astype("float16")
|
385 |
-
feats[0][skip_head // 2 :] = (
|
386 |
-
torch.from_numpy(npy).unsqueeze(0).to(self.device)
|
387 |
-
* self.index_rate
|
388 |
-
+ (1 - self.index_rate) * feats[0][skip_head // 2 :]
|
389 |
-
)
|
390 |
-
else:
|
391 |
-
printt(
|
392 |
-
"Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!"
|
393 |
-
)
|
394 |
-
else:
|
395 |
-
printt("Index search FAILED or disabled")
|
396 |
-
except:
|
397 |
-
traceback.print_exc()
|
398 |
-
printt("Index search FAILED")
|
399 |
-
t3 = ttime()
|
400 |
-
p_len = input_wav.shape[0] // 160
|
401 |
-
if self.if_f0 == 1:
|
402 |
-
f0_extractor_frame = block_frame_16k + 800
|
403 |
-
if f0method == "rmvpe":
|
404 |
-
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
|
405 |
-
pitch, pitchf = self.get_f0(
|
406 |
-
input_wav[-f0_extractor_frame:], self.f0_up_key, self.n_cpu, f0method
|
407 |
-
)
|
408 |
-
shift = block_frame_16k // 160
|
409 |
-
self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone()
|
410 |
-
self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone()
|
411 |
-
self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1]
|
412 |
-
self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1]
|
413 |
-
cache_pitch = self.cache_pitch[None, -p_len:]
|
414 |
-
cache_pitchf = self.cache_pitchf[None, -p_len:]
|
415 |
-
t4 = ttime()
|
416 |
-
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
417 |
-
feats = feats[:, :p_len, :]
|
418 |
-
p_len = torch.LongTensor([p_len]).to(self.device)
|
419 |
-
sid = torch.LongTensor([0]).to(self.device)
|
420 |
-
skip_head = torch.LongTensor([skip_head])
|
421 |
-
return_length = torch.LongTensor([return_length])
|
422 |
-
with torch.no_grad():
|
423 |
-
if self.if_f0 == 1:
|
424 |
-
infered_audio, _, _ = self.net_g.infer(
|
425 |
-
feats,
|
426 |
-
p_len,
|
427 |
-
cache_pitch,
|
428 |
-
cache_pitchf,
|
429 |
-
sid,
|
430 |
-
skip_head,
|
431 |
-
return_length,
|
432 |
-
)
|
433 |
-
else:
|
434 |
-
infered_audio, _, _ = self.net_g.infer(
|
435 |
-
feats, p_len, sid, skip_head, return_length
|
436 |
-
)
|
437 |
-
t5 = ttime()
|
438 |
-
printt(
|
439 |
-
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
|
440 |
-
t2 - t1,
|
441 |
-
t3 - t2,
|
442 |
-
t4 - t3,
|
443 |
-
t5 - t4,
|
444 |
-
)
|
445 |
-
return infered_audio.squeeze().float()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|