Dia-1.6B / dia /state.py
buttercrab's picture
update to faster inference
4aa0f34
from dataclasses import dataclass
import torch
from .config import DiaConfig
def create_attn_mask(
q_padding_mask_1d: torch.Tensor,
k_padding_mask_1d: torch.Tensor,
device: torch.device,
is_causal: bool = False,
) -> torch.Tensor:
"""
Creates the attention mask (self or cross) mimicking JAX segment ID logic.
"""
B1, Tq = q_padding_mask_1d.shape
B2, Tk = k_padding_mask_1d.shape
assert B1 == B2, "Query and key batch dimensions must match"
p_mask_q = q_padding_mask_1d.unsqueeze(2) # Shape [B, Tq, 1]
p_mask_k = k_padding_mask_1d.unsqueeze(1) # Shape [B, 1, Tk]
# Condition A: Non-padding query attends to non-padding key
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
# Condition B: Padding query attends to padding key
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
# Combine: True if padding status is compatible (both non-pad OR both pad)
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
if is_causal:
assert Tq == Tk, (
"Causal mask requires query and key sequence lengths to be equal"
)
causal_mask_2d = torch.tril(
torch.ones((Tq, Tk), dtype=torch.bool, device=device)
) # Shape [Tq, Tk]
causal_mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
return causal_mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
else:
return mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
@dataclass
class EncoderInferenceState:
"""Parameters specifically for encoder inference."""
max_seq_len: int
device: torch.device
positions: torch.Tensor
padding_mask: torch.Tensor
attn_mask: torch.Tensor
@classmethod
def new(cls, config: DiaConfig, cond_src: torch.Tensor) -> "EncoderInferenceState":
"""Creates EtorchrInferenceParams from DiaConfig and a device."""
device = cond_src.device
positions = (
torch.arange(config.data.text_length, device=device)
.to(torch.long)
.unsqueeze(0)
.expand(2, -1)
)
padding_mask = (cond_src != config.data.text_pad_value).to(device).expand(2, -1)
attn_mask = create_attn_mask(
padding_mask, padding_mask, device, is_causal=False
)
return cls(
max_seq_len=config.data.text_length,
device=device,
positions=positions,
padding_mask=padding_mask,
attn_mask=attn_mask,
)
class KVCache:
def __init__(
self,
num_heads: int,
max_len: int,
head_dim: int,
dtype: torch.dtype,
device: torch.device,
k: torch.Tensor | None = None,
v: torch.Tensor | None = None,
):
self.k = (
torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device)
if k is None
else k
)
self.v = (
torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device)
if v is None
else v
)
self.current_idx = torch.tensor(0)
@classmethod
def from_kv(cls, k: torch.Tensor, v: torch.Tensor) -> "KVCache":
return cls(
num_heads=k.shape[1],
max_len=k.shape[2],
head_dim=k.shape[3],
dtype=k.dtype,
device=k.device,
k=k,
v=v,
)
def update(
self, k: torch.Tensor, v: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
self.current_idx += 1
return self.k[:, :, : self.current_idx, :], self.v[:, :, : self.current_idx, :]
def prefill(
self, k: torch.Tensor, v: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
prefill_len = k.shape[2]
self.k[:, :, :prefill_len, :] = k
self.v[:, :, :prefill_len, :] = v
self.current_idx = prefill_len - 1
@dataclass
class DecoderInferenceState:
"""Parameters specifically for decoder inference."""
device: torch.device
dtype: torch.dtype
enc_out: torch.Tensor
enc_positions: torch.Tensor
dec_positions: torch.Tensor
dec_cross_attn_mask: torch.Tensor
self_attn_cache: list[KVCache]
cross_attn_cache: list[KVCache]
@classmethod
def new(
cls,
config: DiaConfig,
enc_state: EncoderInferenceState,
enc_out: torch.Tensor,
dec_cross_attn_cache: list[KVCache],
compute_dtype: torch.dtype,
) -> "DecoderInferenceState":
"""Creates DecoderInferenceParams from DiaConfig and a device."""
device = enc_out.device
max_audio_len = config.data.audio_length
dec_positions = torch.full(
(2, 1), fill_value=0, dtype=torch.long, device=device
)
tgt_padding_mask = torch.ones((2, 1), dtype=torch.bool, device=device)
dec_cross_attn_mask = create_attn_mask(
tgt_padding_mask, enc_state.padding_mask, device, is_causal=False
)
self_attn_cache = [
KVCache(
config.model.decoder.kv_heads,
max_audio_len,
config.model.decoder.gqa_head_dim,
compute_dtype,
device,
)
for _ in range(config.model.decoder.n_layer)
]
return cls(
device=device,
dtype=compute_dtype,
enc_out=enc_out,
enc_positions=enc_state.positions,
dec_positions=dec_positions,
dec_cross_attn_mask=dec_cross_attn_mask,
self_attn_cache=self_attn_cache,
cross_attn_cache=dec_cross_attn_cache,
)
def prepare_step(self, step_from: int, step_to: int | None = None) -> None:
if step_to is None:
step_to = step_from + 1
self.dec_positions = (
torch.arange(step_from, step_to, device=self.device)
.unsqueeze(0)
.expand(2, -1)
)
@dataclass
class DecoderOutput:
generated_tokens: torch.Tensor
prefill_step: int
@classmethod
def new(cls, config: DiaConfig, device: torch.device) -> "DecoderOutput":
max_audio_len = config.data.audio_length
return cls(
generated_tokens=torch.full(
(max_audio_len, config.data.channels),
fill_value=-1,
dtype=torch.int,
device=device,
),
prefill_step=0,
)
def get_tokens_at(self, step_from: int, step_to: int | None = None) -> torch.Tensor:
if step_to is None:
step_to = step_from + 1
return self.generated_tokens[step_from:step_to, :]
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
if apply_mask:
mask = self.generated_tokens[step : step + 1, :] == -1
self.generated_tokens[step : step + 1, :] = torch.where(
mask, dec_out, self.generated_tokens[step : step + 1, :]
)
else:
self.generated_tokens[step : step + 1, :] = dec_out
def prefill(self, dec_out: torch.Tensor, prefill_step: int):
length = dec_out.shape[0]
self.generated_tokens[0:length, :] = dec_out
self.prefill_step = prefill_step