naonauno's picture
Upload 855 files
d66c48f verified
raw
history blame contribute delete
4.11 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from huggingface_hub import snapshot_download
from models.vc.vevo.vevo_utils import *
def vevo_tts(
src_text,
ref_wav_path,
timbre_ref_wav_path=None,
output_path=None,
ref_text=None,
src_language="en",
ref_language="en",
):
if timbre_ref_wav_path is None:
timbre_ref_wav_path = ref_wav_path
gen_audio = inference_pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=src_text,
style_ref_wav_path=ref_wav_path,
timbre_ref_wav_path=timbre_ref_wav_path,
style_ref_wav_text=ref_text,
src_text_language=src_language,
style_ref_wav_text_language=ref_language,
)
assert output_path is not None
save_audio(gen_audio, output_path=output_path)
if __name__ == "__main__":
# ===== Device =====
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# ===== Content-Style Tokenizer =====
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# ===== Autoregressive Transformer =====
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# ===== Flow Matching Transformer =====
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# ===== Vocoder =====
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# ===== Inference =====
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
src_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
ref_wav_path = "./models/vc/vevo/wav/arabic_male.wav"
ref_text = "Flip stood undecided, his ears strained to catch the slightest sound."
# 1. Zero-Shot TTS (the style reference and timbre reference are same)
vevo_tts(
src_text,
ref_wav_path,
output_path="./models/vc/vevo/wav/output_vevotts1.wav",
ref_text=ref_text,
src_language="en",
ref_language="en",
)
# 2. Style and Timbre Controllable Zero-Shot TTS (the style reference and timbre reference are different)
vevo_tts(
src_text,
ref_wav_path,
timbre_ref_wav_path="./models/vc/vevo/wav/mandarin_female.wav",
output_path="./models/vc/vevo/wav/output_vevotts2.wav",
ref_text=ref_text,
src_language="en",
ref_language="en",
)