Spaces:
Paused
Paused
File size: 9,655 Bytes
d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f 2bc810c d66c48f e366fb9 d66c48f e366fb9 d66c48f e366fb9 d66c48f e366fb9 d66c48f e366fb9 d66c48f e366fb9 d66c48f 2bc810c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import sys
import torch
import gradio as gr
from pydub import AudioSegment
import mimetypes
sys.path.append('./Amphion')
import Amphion.models.vc.vevo.vevo_utils as vevo_utils
from huggingface_hub import snapshot_download
def load_model():
print("Loading model...")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
cache_dir = "./ckpts/Vevo"
os.makedirs(cache_dir, exist_ok=True)
# Content Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir=cache_dir,
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# Content-Style Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir=cache_dir,
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Autoregressive Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir=cache_dir,
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_cfg_path = "./config/Vq32ToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir=cache_dir,
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir=cache_dir,
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./Amphion/models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
print("Initializing pipeline...")
pipeline = vevo_utils.VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device
)
print("Model loaded successfully!")
return pipeline
def convert_to_wav(audio_path):
if audio_path is None:
return None
mime, _ = mimetypes.guess_type(audio_path)
if mime == 'audio/wav' or mime == 'audio/x-wav':
return audio_path
elif mime == 'audio/mpeg':
seg = AudioSegment.from_mp3(audio_path)
wav_path = audio_path.rsplit('.', 1)[0] + '.wav'
seg.export(wav_path, format="wav")
return wav_path
else:
raise ValueError(f"Unsupported audio format: {mime}")
def process_audio(mode, content_audio, ref_style_audio, ref_timbre_audio,
src_text, ref_text, src_language, ref_language, steps,
progress=gr.Progress()):
try:
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "output.wav")
# Convert uploaded audio files to WAV if needed
if content_audio:
content_path = convert_to_wav(content_audio)
else:
content_path = None
if ref_style_audio:
ref_style_path = convert_to_wav(ref_style_audio)
else:
ref_style_path = None
if ref_timbre_audio:
ref_timbre_path = convert_to_wav(ref_timbre_audio)
else:
ref_timbre_path = None
progress(0.2, "Processing audio...")
# Run inference based on mode
if mode == 'voice':
if not all([content_path, ref_style_path, ref_timbre_path]):
raise gr.Error("Voice mode requires all audio inputs")
gen_audio = inference_pipeline.inference_ar_and_fm(
src_wav_path=content_path,
src_text=None,
style_ref_wav_path=ref_style_path,
timbre_ref_wav_path=ref_timbre_path,
flow_matching_steps=steps
)
elif mode == 'timbre':
if not all([content_path, ref_timbre_path]):
raise gr.Error("Timbre mode requires source and timbre reference audio")
gen_audio = inference_pipeline.inference_fm(
src_wav_path=content_path,
timbre_ref_wav_path=ref_timbre_path,
flow_matching_steps=steps
)
elif mode == 'tts':
if not all([ref_style_path, ref_timbre_path]) or not src_text:
raise gr.Error("TTS mode requires style audio, timbre audio, and source text")
gen_audio = inference_pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=src_text,
style_ref_wav_path=ref_style_path,
timbre_ref_wav_path=ref_timbre_path,
style_ref_wav_text=ref_text if ref_text else None,
src_text_language=src_language,
style_ref_wav_text_language=ref_language
)
progress(0.8, "Saving generated audio...")
# Save and return the generated audio
vevo_utils.save_audio(gen_audio, target_sample_rate=48000, output_path=output_path)
return output_path
except Exception as e:
raise gr.Error(str(e))
# Initialize the model
inference_pipeline = load_model()
# Create the Gradio interface
with gr.Blocks(title="Vevo Voice Conversion") as demo:
gr.Markdown("# Vevo Voice Conversion")
with gr.Row():
mode = gr.Radio(
choices=["voice", "timbre", "tts"],
value="timbre",
label="Inference Mode",
interactive=True
)
with gr.Tabs():
with gr.TabItem("Audio Inputs"):
content_audio = gr.Audio(
label="Source Audio",
type="filepath",
interactive=True
)
ref_style_audio = gr.Audio(
label="Reference Style Audio",
type="filepath",
interactive=True
)
ref_timbre_audio = gr.Audio(
label="Reference Timbre Audio",
type="filepath",
interactive=True
)
with gr.TabItem("Text Inputs (TTS Mode)"):
src_text = gr.Textbox(
label="Source Text",
placeholder="Enter text for TTS mode",
interactive=True
)
ref_text = gr.Textbox(
label="Reference Style Text (Optional)",
placeholder="Enter reference text",
interactive=True
)
with gr.Row():
src_language = gr.Dropdown(
choices=["en", "zh"],
value="en",
label="Source Language",
interactive=True
)
ref_language = gr.Dropdown(
choices=["en", "zh"],
value="en",
label="Reference Language",
interactive=True
)
with gr.Row():
steps = gr.Slider(
minimum=1,
maximum=64,
value=32,
step=1,
label="Flow Matching Steps"
)
with gr.Row():
with gr.Column():
submit_btn = gr.Button("Generate")
error_box = gr.Textbox(label="Status", interactive=False)
output_audio = gr.Audio(label="Generated Audio")
def process_with_error_handling(*args):
try:
result = process_audio(*args)
error_box.update(value="Success!")
return [result, "Success!"]
except Exception as e:
error_msg = str(e)
return [None, error_msg]
submit_btn.click(
fn=process_with_error_handling,
inputs=[
mode,
content_audio,
ref_style_audio,
ref_timbre_audio,
src_text,
ref_text,
src_language,
ref_language,
steps
],
outputs=[output_audio, error_box]
)
# Example usage text
gr.Markdown("""
## Quick Start Guide
1. Select your mode:
- **Voice**: Full voice conversion (style + timbre)
- **Timbre**: Only voice timbre conversion
- **TTS**: Text-to-speech with voice cloning
2. For Voice/Timbre modes:
- Upload source audio (what you want to convert)
- Upload reference audio(s)
3. For TTS mode:
- Enter your text
- Select language
- Upload reference audio(s)
4. Adjust steps slider:
- Higher values = better quality but slower
- Lower values = faster but lower quality
5. Click Generate and wait for processing
""")
if __name__ == "__main__":
demo.queue().launch() |