File size: 1,938 Bytes
d66c48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn

from modules.activation_functions import GaU
from modules.general.utils import Conv1d


class ResidualBlock(nn.Module):
    r"""Residual block with dilated convolution, main portion of ``BiDilConv``.



    Args:

        channels: The number of channels of input and output.

        kernel_size: The kernel size of dilated convolution.

        dilation: The dilation rate of dilated convolution.

        d_context: The dimension of content encoder output, None if don't use context.

    """

    def __init__(

        self,

        channels: int = 256,

        kernel_size: int = 3,

        dilation: int = 1,

        d_context: int = None,

    ):
        super().__init__()

        self.context = d_context

        self.gau = GaU(
            channels,
            kernel_size,
            dilation,
            d_context,
        )

        self.out_proj = Conv1d(
            channels,
            channels * 2,
            1,
        )

    def forward(

        self,

        x: torch.Tensor,

        y_emb: torch.Tensor,

        context: torch.Tensor = None,

    ):
        """

        Args:

            x: Latent representation inherited from previous residual block

                with the shape of [B x C x T].

            y_emb: Embeddings with the shape of [B x C], which will be FILM on the x.

            context: Context with the shape of [B x ``d_context`` x T], default to None.

        """

        h = x + y_emb[..., None]

        if self.context:
            h = self.gau(h, context)
        else:
            h = self.gau(h)

        h = self.out_proj(h)
        res, skip = h.chunk(2, 1)

        return (res + x) / math.sqrt(2.0), skip