File size: 1,677 Bytes
d66c48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn

from modules.general.utils import Conv1d


class GaU(nn.Module):
    r"""Gated Activation Unit (GaU) proposed in `Gated Activation Units for Neural

    Networks <https://arxiv.org/pdf/1606.05328.pdf>`_.



    Args:

        channels: number of input channels.

        kernel_size: kernel size of the convolution.

        dilation: dilation rate of the convolution.

        d_context: dimension of context tensor, None if don't use context.

    """

    def __init__(

        self,

        channels: int,

        kernel_size: int = 3,

        dilation: int = 1,

        d_context: int = None,

    ):
        super().__init__()

        self.context = d_context

        self.conv = Conv1d(
            channels,
            channels * 2,
            kernel_size,
            dilation=dilation,
            padding=dilation * (kernel_size - 1) // 2,
        )

        if self.context:
            self.context_proj = Conv1d(d_context, channels * 2, 1)

    def forward(self, x: torch.Tensor, context: torch.Tensor = None):
        r"""Calculate forward propagation.



        Args:

            x: input tensor with shape [B, C, T].

            context: context tensor with shape [B, ``d_context``, T], default to None.

        """

        h = self.conv(x)

        if self.context:
            h = h + self.context_proj(context)

        h1, h2 = h.chunk(2, 1)
        h = torch.tanh(h1) * torch.sigmoid(h2)

        return h