Spaces:
Running
Running
File size: 11,160 Bytes
e425a6f 097e23d b7a2f31 d26e194 097e23d e425a6f d26e194 e425a6f 097e23d b7a2f31 097e23d d26e194 e425a6f d26e194 e425a6f d26e194 e425a6f 097e23d b7a2f31 e425a6f 097e23d e425a6f d26e194 b7a2f31 d26e194 b7a2f31 d26e194 b7a2f31 e425a6f b7a2f31 d26e194 b7a2f31 e425a6f d26e194 e425a6f d26e194 e425a6f d26e194 e425a6f d26e194 097e23d b7a2f31 d26e194 e425a6f b7a2f31 e425a6f d26e194 b7a2f31 e425a6f d26e194 b7a2f31 d26e194 b7a2f31 d26e194 b7a2f31 d26e194 b7a2f31 097e23d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#!/usr/bin/env python3
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor, Qwen2VLForConditionalGeneration
from utils import image_to_base64, rescale_bounding_boxes, draw_bounding_boxes, florence_draw_bboxes
from qwen_vl_utils import process_vision_info
import re
import base64
import os
llms = {
"Qwen2-1.5B": {"model": "Qwen/Qwen2-1.5B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
"Qwen2-3B": {"model": "Qwen/Qwen2-3B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
"Qwen2-7B": {"model": "Qwen/Qwen2-7B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
"Qwen2.5-1.5B": {"model": "Qwen/Qwen2.5-1.5B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
"Qwen2.5-3B": {"model": "Qwen/Qwen2.5-3B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
"DeepSeek-Coder-1.3B": {"model": "deepseek-ai/deepseek-coder-1.3b-instruct", "prefix": "You are a helpful assistant."},
"DeepSeek-r1-Qwen-1.5B": {"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "prefix": "You are a helpful assistant."},
}
vlms = {
"Florence-2-base": {"model": "microsoft/Florence-2-base", "prefix": "help me"},
"Florence-2-large": {"model": "microsoft/Florence-2-large", "prefix": "help me"},
"Qwen2-vl-2B": {"model": "Qwen/Qwen2-VL-2B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."},
"Qwen2-vl-7B": {"model": "Qwen/Qwen2-VL-7B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."},
"Qwen2.5-vl-3B": {"model": "Qwen/Qwen2.5-VL-3B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."}
}
tasks = ["<OD>", "<OCR>", "<CAPTION>", "<OCR_WITH_REGION>"]
def get_image_base64(image_path):
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return encoded_string
# At the top of your file, after imports
current_dir = os.path.dirname(os.path.abspath(__file__))
image_path = os.path.join(current_dir, "assets", "hailo_logo.gif")
image_base64 = get_image_base64(image_path)
def run_llm(text_input, model_id="Qwen2-1.5B", prefix=None):
global messages
tokenizer = AutoTokenizer.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
# Use the provided prefix if available, otherwise fall back to the default
system_prefix = prefix if prefix is not None else llms[model_id]["prefix"]
if messages is None:
messages = [
{"role": "system", "content": system_prefix},
{"role": "user", "content": text_input},
]
else:
messages.append({"role": "user", "content": text_input})
text = tokenizer.apply_chat_template (
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
def run_vlm(image, text_input, model_id="Qwen2-vl-2B", prompt="<OD>", custom_prefix=None):
if "Qwen" in model_id:
model = Qwen2VLForConditionalGeneration.from_pretrained(vlms[model_id]["model"], torch_dtype="auto", device_map="auto")
else:
model = AutoModelForCausalLM.from_pretrained(vlms[model_id]["model"], trust_remote_code=True)
processor = AutoProcessor.from_pretrained(vlms[model_id]["model"], trust_remote_code=True)
if "Qwen" in model_id:
# Use custom prefix if provided, otherwise use default from vlms dictionary
prefix_to_use = custom_prefix if custom_prefix is not None else vlms[model_id]["prefix"]
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
{"type": "text", "text": prefix_to_use},
{"type": "text", "text": text_input},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
pattern = r'\[\s*([.\d]+)\s*,\s*([.\d]+)\s*,\s*([.\d]+)\s*,\s*([.\d]+)\s*\]'
matches = re.findall(pattern, str(output_text))
parsed_boxes = [[float(num) for num in match] for match in matches]
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
print(scaled_boxes)
draw = draw_bounding_boxes(image, scaled_boxes)
else:
messages = prompt + text_input
inputs = processor(text=messages, images=image, return_tensors="pt").to(model.device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=prompt,
image_size=(image.width, image.height)
)
print(parsed_answer)
if prompt == '<OD>':
parsed_boxes = parsed_answer['<OD>']['bboxes']
draw = florence_draw_bboxes(image, parsed_answer)
output_text = "None"
elif prompt == '<OCR>':
output_text = parsed_answer['<OCR>']
draw = image
parsed_boxes = None
return output_text, parsed_boxes, draw
messages = list()
def reset_conversation():
global messages
messages = list()
def update_task_dropdown(model):
if "Florence" in model:
return [gr.Dropdown(visible=True), gr.Textbox(value=vlms[model]["prefix"])]
elif model in vlms:
return [gr.Dropdown(visible=False), gr.Textbox(value=vlms[model]["prefix"])]
return [gr.Dropdown(visible=False), gr.Textbox(value="")]
def update_prefix_llm(model):
if model in llms:
return gr.Textbox(value=llms[model]["prefix"], visible=True)
return gr.Textbox(visible=True)
with gr.Blocks() as demo:
gr.Markdown(
f"""
<div style="display: flex; align-items: center; gap: 10px;">
<img src="data:image/gif;base64,{image_base64}" height="40px" style="margin-right: 10px;">
<h1 style="margin: 0;">LLM & VLM Demo</h1>
</div>
Use the different LLMs or VLMs to experience the different models.
<u>Note</u>: first use of any model will take more time, for the downloading of the weights.
""")
with gr.Tab(label="LLM"):
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(choices=list(llms.keys()), label="Model", value="Qwen2-1.5B")
text_input = gr.Textbox(label="User Prompt")
prefix_input = gr.Textbox(label="Prefix", value=llms["Qwen2.5-1.5B"]["prefix"])
submit_btn = gr.Button(value="Submit", variant='primary')
reset_btn = gr.Button(value="Reset conversation", variant='stop')
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
model_selector.change(update_prefix_llm, inputs=model_selector, outputs=prefix_input)
submit_btn.click(run_llm,
[text_input, model_selector, prefix_input],
[model_output_text])
reset_btn.click(reset_conversation)
with gr.Tab(label="VLM (WIP)"):
# taken from https://huggingface.co./spaces/maxiw/Qwen2-VL-Detection/blob/main/app.py
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil", scale=2, height=400)
model_selector = gr.Dropdown(choices=list(vlms.keys()), label="Model", value="Qwen2-vl-2B")
task_select = gr.Dropdown(choices=tasks, label="task", value= "<OD>")
text_input = gr.Textbox(label="User Prompt")
prefix_input = gr.Textbox(label="Prefix")
submit_btn = gr.Button(value="Submit", variant='primary')
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
parsed_boxes = gr.Textbox(label="Parsed Boxes")
annotated_image = gr.Image(label="Annotated Image", scale=2, height=400)
model_selector.change(update_task_dropdown,
inputs=model_selector,
outputs=[task_select, prefix_input])
submit_btn.click(run_vlm,
[input_img, text_input, model_selector, task_select, prefix_input],
[model_output_text, parsed_boxes, annotated_image])
if __name__ == "__main__":
demo.launch()
|