themissingCRAM commited on
Commit
5756803
·
1 Parent(s): 6193310

blocks experiment

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -1,7 +1,14 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import os
4
- from smolagents import tool, CodeAgent, HfApiModel, GradioUI, MultiStepAgent
 
 
 
 
 
 
 
5
  from sqlalchemy import (
6
  create_engine,
7
  MetaData,
@@ -120,6 +127,9 @@ if __name__ == "__main__":
120
 
121
  agent = CodeAgent(
122
  tools=[sql_engine_tool],
 
 
 
123
  model=model,
124
  max_steps=1,
125
  verbosity_level=1,
@@ -127,13 +137,14 @@ if __name__ == "__main__":
127
  # agent.run("What is the average each customer paid?")
128
  # GradioUI(agent).launch()
129
 
130
- def enter_message(message, chat_history, engine):
131
  print()
132
  print("enter_message debug")
133
- print(message)
134
- print(chat_history)
 
135
  chat_history.append({"role": "user", "content": message})
136
- x = agent.run(message, additional_args=dict(engine=engine))
137
  print(type(x))
138
  print("\n\n\n", x, "\n\n\n")
139
  return "", x
@@ -142,5 +153,5 @@ if __name__ == "__main__":
142
  chatbot = gr.Chatbot(type="messages")
143
  input = gr.Textbox()
144
  button = gr.Button("reply")
145
- button.click(enter_message, [input, chatbot, engine], [input, chatbot, engine])
146
  b.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import os
4
+ from smolagents import (
5
+ tool,
6
+ CodeAgent,
7
+ HfApiModel,
8
+ GradioUI,
9
+ MultiStepAgent,
10
+ stream_to_gradio,
11
+ )
12
  from sqlalchemy import (
13
  create_engine,
14
  MetaData,
 
127
 
128
  agent = CodeAgent(
129
  tools=[sql_engine_tool],
130
+ # system_prompt="""
131
+ # You are a text to sql converter
132
+ # """,
133
  model=model,
134
  max_steps=1,
135
  verbosity_level=1,
 
137
  # agent.run("What is the average each customer paid?")
138
  # GradioUI(agent).launch()
139
 
140
+ def enter_message(message, chat_history):
141
  print()
142
  print("enter_message debug")
143
+ print("engine", engine)
144
+ print("message:", message)
145
+ print("chat_history", chat_history)
146
  chat_history.append({"role": "user", "content": message})
147
+ x = stream_to_gradio(agent, message, additional_args=dict(engine=engine))
148
  print(type(x))
149
  print("\n\n\n", x, "\n\n\n")
150
  return "", x
 
153
  chatbot = gr.Chatbot(type="messages")
154
  input = gr.Textbox()
155
  button = gr.Button("reply")
156
+ button.click(enter_message, [input, chatbot], [input, chatbot])
157
  b.launch()