File size: 2,381 Bytes
dc66050
 
3674844
8586ebb
ee14926
 
5992538
ee14926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc66050
 
8586ebb
ee14926
2d1e4f3
 
 
 
 
 
 
 
 
 
 
 
ee14926
2d1e4f3
 
ee14926
2d1e4f3
 
 
 
 
ee14926
2d1e4f3
 
 
 
 
 
 
 
 
 
ee14926
2d1e4f3
 
 
ee14926
 
 
 
 
 
 
 
 
 
 
 
2d1e4f3
 
8586ebb
 
 
 
 
 
 
 
 
 
ee14926
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
from huggingface_hub import InferenceClient
import os
from smolagents import tool, CodeAgent, HfApiModel, GradioUI


@tool
def sql_engine(query: str) -> str:
    """
    Allows you to perform SQL queries on the table. Returns a string representation of the result.
    The table is named 'receipts'. Its description is as follows:
        Columns:
        - receipt_id: INTEGER
        - customer_name: VARCHAR(16)
        - price: FLOAT
        - tip: FLOAT

    Args:
        query: The query to perform. This should be correct SQL.
    """
    output = ""
    with engine.connect() as con:
        rows = con.execute(text(query))
        for row in rows:
            output += "\n" + str(row)
    return output


def init_db():

    from sqlalchemy import (
        create_engine,
        MetaData,
        Table,
        Column,
        String,
        Integer,
        Float,
        insert,
        inspect,
        text,
    )

    engine = create_engine("sqlite:///:memory:")
    metadata_obj = MetaData()

    def insert_rows_into_table(rows, table, engine=engine):
        for row in rows:
            stmt = insert(table).values(**row)
            with engine.begin() as connection:
                connection.execute(stmt)

    table_name = "receipts"
    receipts = Table(
        table_name,
        metadata_obj,
        Column("receipt_id", Integer, primary_key=True),
        Column("customer_name", String(16), primary_key=True),
        Column("price", Float),
        Column("tip", Float),
    )
    metadata_obj.create_all(engine)

    rows = [
        {"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
        {"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
        {
            "receipt_id": 3,
            "customer_name": "Woodrow Wilson",
            "price": 53.43,
            "tip": 5.43,
        },
        {
            "receipt_id": 4,
            "customer_name": "Margaret James",
            "price": 21.11,
            "tip": 1.00,
        },
    ]
    insert_rows_into_table(rows, receipts)


if __name__ == "__main__":
    agent = CodeAgent(
        tools=[sql_engine],
        model=HfApiModel(
            model_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
            token=os.getenv("my_first_agents_hf_tokens"),
        ),
    )
    GradioUI(agent).launch()