Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Set cache directories to /tmp which is writable | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache" | |
os.environ["HF_HOME"] = "/tmp/hf_home" | |
os.environ["XDG_CACHE_HOME"] = "/tmp/cache" | |
# Create cache directories if they don't exist | |
os.makedirs("/tmp/transformers_cache", exist_ok=True) | |
os.makedirs("/tmp/hf_home", exist_ok=True) | |
os.makedirs("/tmp/cache", exist_ok=True) | |
# Load model with explicit cache directory | |
model_name = "mynuddin/chatbot" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
cache_dir="/tmp/model_cache" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
cache_dir="/tmp/model_cache" | |
).to("cpu") | |
app = FastAPI() | |
def generate_text(prompt: str): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
output = model.generate(**inputs, max_length=128) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return {"generated_query": generated_text} |