# Import required libraries import streamlit as st from transformers import ViTForImageClassification, ViTFeatureExtractor from PIL import Image import torch # Load the pre-trained model and feature extractor model_name = "nateraw/vit-age-classifier" model = ViTForImageClassification.from_pretrained(model_name) feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) # Set up Streamlit app st.set_page_config(page_title="Age Classifier", page_icon="👶") st.title("Age Classification using AI") st.write("Upload an image of a person, and the model will predict their age group.") # Upload image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Open the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess the image inputs = feature_extractor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Get the predicted class predicted_class_idx = logits.argmax(-1).item() predicted_age_group = model.config.id2label[predicted_class_idx] # Display the result st.write(f"**Predicted Age Group:** {predicted_age_group}")