Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
# Keep using gradio.ChatMessage for type hints if needed, but not for yielding complex structures directly to ChatInterface
|
4 |
-
# from gradio import ChatMessage # Maybe remove this import if not used elsewhere
|
5 |
import requests
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
from langchain_core.tools import tool
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
from langgraph.checkpoint.memory import MemorySaver
|
11 |
from langgraph.prebuilt import create_react_agent
|
12 |
|
13 |
-
# ---
|
|
|
|
|
|
|
14 |
@tool
|
15 |
def get_lat_lng(location_description: str) -> dict[str, float]:
|
16 |
"""Get the latitude and longitude of a location."""
|
@@ -30,7 +35,6 @@ def get_weather(lat: float, lng: float) -> dict[str, str]:
|
|
30 |
"""Get the weather at a location."""
|
31 |
print(f"Tool: Getting weather for lat={lat}, lng={lng}")
|
32 |
# Replace with actual API call in a real app
|
33 |
-
# Dummy logic based on lat
|
34 |
if lat > 45: # Northern locations
|
35 |
return {"temperature": "15°C", "description": "Cloudy"}
|
36 |
elif lat > 30: # Mid locations
|
@@ -38,81 +42,412 @@ def get_weather(lat: float, lng: float) -> dict[str, str]:
|
|
38 |
else: # Southern locations
|
39 |
return {"temperature": "30°C", "description": "Very Sunny"}
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if user_msg:
|
49 |
-
lc_messages.append(HumanMessage(content=user_msg))
|
50 |
-
if ai_msg:
|
51 |
-
# Important: Handle potential previous intermediate strings from AI
|
52 |
-
# If the ai_msg contains markers like "🛠️ Using", it was an intermediate step.
|
53 |
-
# For simplicity here, we assume full AI responses were stored previously.
|
54 |
-
# A more robust solution might involve storing message types in history.
|
55 |
-
if not ai_msg.startswith("🛠️ Using") and not ai_msg.startswith("Result:"):
|
56 |
-
lc_messages.append(AIMessage(content=ai_msg))
|
57 |
-
|
58 |
-
lc_messages.append(HumanMessage(content=message))
|
59 |
-
|
60 |
-
llm = ChatOpenAI(temperature=0, model="gpt-4")
|
61 |
-
memory = MemorySaver() # Be mindful of memory state if agent is re-initialized every time
|
62 |
-
tools = [get_lat_lng, get_weather]
|
63 |
-
agent_executor = create_react_agent(llm, tools, checkpointer=memory)
|
64 |
-
|
65 |
-
# Use a unique thread_id per session if needed, or manage state differently
|
66 |
-
# Using a fixed one like "abc123" means all users share the same memory if server restarts aren't frequent
|
67 |
-
thread_id = "user_session_" + str(os.urandom(4).hex()) # Example: generate unique ID
|
68 |
-
|
69 |
-
full_response = ""
|
70 |
-
|
71 |
-
async for chunk in agent_executor.astream_events(
|
72 |
-
{"messages": lc_messages},
|
73 |
-
config={"configurable": {"thread_id": thread_id}},
|
74 |
-
version="v1" # Use v1 for events streaming
|
75 |
-
):
|
76 |
-
event = chunk["event"]
|
77 |
-
data = chunk["data"]
|
78 |
-
|
79 |
-
if event == "on_chat_model_stream":
|
80 |
-
content = data["chunk"].content
|
81 |
-
if content:
|
82 |
-
full_response += content
|
83 |
-
yield full_response
|
84 |
-
|
85 |
-
elif event == "on_tool_start":
|
86 |
-
tool_input_str = str(data.get('input', ''))
|
87 |
-
yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
|
88 |
-
|
89 |
-
elif event == "on_tool_end":
|
90 |
-
tool_output_str = str(data.get('output', ''))
|
91 |
-
yield f"Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
|
92 |
-
if full_response:
|
93 |
-
yield full_response
|
94 |
-
|
95 |
-
if full_response and (not chunk or chunk["event"] != "on_chat_model_stream"):
|
96 |
-
yield full_response
|
97 |
-
|
98 |
-
|
99 |
-
# --- Gradio Interface (mostly unchanged) ---
|
100 |
-
demo = gr.ChatInterface(
|
101 |
-
fn=Answer_from_agent,
|
102 |
-
type="messages",
|
103 |
-
title="🤖 AGent template",
|
104 |
-
description="Ask about the weather anywhere! Watch as I gather the information step by step.",
|
105 |
-
cache_examples=False,
|
106 |
-
save_history=True,
|
107 |
-
editable=True,
|
108 |
-
)
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
try:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
|
|
3 |
import requests
|
4 |
+
import inspect # To get source code for __repr__
|
5 |
+
import asyncio
|
6 |
+
from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional
|
7 |
+
|
8 |
+
# --- LangChain Specific Imports ---
|
9 |
+
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
|
10 |
from langchain_core.tools import tool
|
11 |
from langchain_openai import ChatOpenAI
|
12 |
from langgraph.checkpoint.memory import MemorySaver
|
13 |
from langgraph.prebuilt import create_react_agent
|
14 |
|
15 |
+
# --- Constants ---
|
16 |
+
DEFAULT_API_URL = "http://127.0.0.1:8000" # Default URL for your FastAPI app
|
17 |
+
|
18 |
+
# --- Tools (Keep these defined globally or ensure they are included in __repr__) ---
|
19 |
@tool
|
20 |
def get_lat_lng(location_description: str) -> dict[str, float]:
|
21 |
"""Get the latitude and longitude of a location."""
|
|
|
35 |
"""Get the weather at a location."""
|
36 |
print(f"Tool: Getting weather for lat={lat}, lng={lng}")
|
37 |
# Replace with actual API call in a real app
|
|
|
38 |
if lat > 45: # Northern locations
|
39 |
return {"temperature": "15°C", "description": "Cloudy"}
|
40 |
elif lat > 30: # Mid locations
|
|
|
42 |
else: # Southern locations
|
43 |
return {"temperature": "30°C", "description": "Very Sunny"}
|
44 |
|
45 |
+
# --- Agent Class Definition ---
|
46 |
+
class MyLangChainAgent:
|
47 |
+
"""
|
48 |
+
A sample LangChain agent class designed for interaction and submission.
|
49 |
+
NOTE: The current tools (weather/location) are placeholders and WILL NOT
|
50 |
+
correctly answer GAIA benchmark questions. This class structure
|
51 |
+
demonstrates how to integrate an agent with the submission API.
|
52 |
+
Replace LLM, tools, and potentially the agent type for actual GAIA tasks.
|
53 |
+
"""
|
54 |
+
def __init__(self, model_name="gpt-4", temperature=0):
|
55 |
+
# Ensure API key is available
|
56 |
+
if not os.getenv("OPENAI_API_KEY"):
|
57 |
+
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
58 |
|
59 |
+
self.llm = ChatOpenAI(temperature=temperature, model=model_name)
|
60 |
+
self.tools = [get_lat_lng, get_weather] # Use the globally defined tools
|
61 |
+
self.memory = MemorySaver()
|
62 |
+
# Create the agent executor
|
63 |
+
self.agent_executor = create_react_agent(self.llm, self.tools, checkpointer=self.memory)
|
64 |
+
print("MyLangChainAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
async def __call__(self, question: str, thread_id: str) -> AsyncGenerator[Union[str, Dict[str, str]], str]:
|
67 |
+
"""
|
68 |
+
Runs the agent asynchronously, yielding intermediate steps and returning the final answer.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
question: The input question string.
|
72 |
+
thread_id: A unique identifier for the conversation thread.
|
73 |
+
|
74 |
+
Yields:
|
75 |
+
Intermediate steps (tool calls/results) as strings or dicts.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
The final AI answer as a string.
|
79 |
+
"""
|
80 |
+
print(f"Agent executing for thread_id: {thread_id} on question: {question[:50]}...")
|
81 |
+
lc_messages: List[BaseMessage] = [HumanMessage(content=question)]
|
82 |
+
final_answer = ""
|
83 |
+
full_response_content = "" # Store the complete AI response chunks
|
84 |
+
|
85 |
+
async for chunk in self.agent_executor.astream_events(
|
86 |
+
{"messages": lc_messages},
|
87 |
+
config={"configurable": {"thread_id": thread_id}},
|
88 |
+
version="v1"
|
89 |
+
):
|
90 |
+
event = chunk["event"]
|
91 |
+
data = chunk["data"]
|
92 |
+
# print(f"DEBUG: Event: {event}, Data Keys: {data.keys()}") # Debugging line
|
93 |
+
|
94 |
+
if event == "on_chat_model_stream":
|
95 |
+
content = data["chunk"].content
|
96 |
+
if content:
|
97 |
+
# print(f"DEBUG: AI Chunk: {content}") # Debugging line
|
98 |
+
full_response_content += content
|
99 |
+
# Yield potentially incomplete response for live typing effect if needed
|
100 |
+
# yield {"type": "stream", "content": content }
|
101 |
+
|
102 |
+
elif event == "on_tool_start":
|
103 |
+
tool_input_str = str(data.get('input', ''))
|
104 |
+
yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
|
105 |
+
|
106 |
+
elif event == "on_tool_end":
|
107 |
+
tool_output_str = str(data.get('output', ''))
|
108 |
+
yield f"✅ Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
|
109 |
+
|
110 |
+
# Detect the end of the conversation turn (heuristic)
|
111 |
+
# The 'on_chain_end' event for the top-level graph might signal the end.
|
112 |
+
# Or check the 'messages' list in the final state if available.
|
113 |
+
# For create_react_agent, the final AIMessage is often the last main event.
|
114 |
+
# We will capture the last full AI message content after the loop.
|
115 |
+
|
116 |
+
# After iterating through all chunks, the final answer should be in full_response_content
|
117 |
+
final_answer = full_response_content.strip()
|
118 |
+
print(f"Agent execution finished. Final Answer: {final_answer[:100]}...")
|
119 |
+
# Yield the complete final answer distinctly if needed
|
120 |
+
# yield {"type": "final_answer_marker", "content": final_answer} # Example marker
|
121 |
+
return final_answer # Return the final answer
|
122 |
+
|
123 |
+
def __repr__(self) -> str:
|
124 |
+
"""
|
125 |
+
Return the source code required to reconstruct this agent, including
|
126 |
+
the class definition, tool functions, and necessary imports.
|
127 |
+
"""
|
128 |
+
imports = [
|
129 |
+
"import os",
|
130 |
+
"from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional",
|
131 |
+
"from langchain_core.messages import HumanMessage, AIMessage, BaseMessage",
|
132 |
+
"from langchain_core.tools import tool",
|
133 |
+
"from langchain_openai import ChatOpenAI",
|
134 |
+
"from langgraph.checkpoint.memory import MemorySaver",
|
135 |
+
"from langgraph.prebuilt import create_react_agent",
|
136 |
+
"import inspect", # Needed if repr itself uses inspect dynamically
|
137 |
+
"import asyncio", # Needed for async call
|
138 |
+
"\n"
|
139 |
+
]
|
140 |
+
# Get source code of tool functions
|
141 |
+
tool_sources = []
|
142 |
+
for t in self.tools:
|
143 |
+
try:
|
144 |
+
tool_sources.append(inspect.getsource(t))
|
145 |
+
except (TypeError, OSError) as e:
|
146 |
+
print(f"Warning: Could not get source for tool {t.__name__}: {e}")
|
147 |
+
tool_sources.append(f"# Could not automatically get source for tool: {t.__name__}\n")
|
148 |
+
|
149 |
+
# Get source code of the class itself
|
150 |
+
class_source = inspect.getsource(MyLangChainAgent)
|
151 |
+
|
152 |
+
# Combine imports, tools, and class definition
|
153 |
+
full_source = "\n".join(imports) + "\n\n" + \
|
154 |
+
"\n\n".join(tool_sources) + "\n\n" + \
|
155 |
+
class_source
|
156 |
+
return full_source
|
157 |
+
|
158 |
+
|
159 |
+
# --- Gradio UI and Logic ---
|
160 |
+
|
161 |
+
# Initialize the agent (do this once outside the request functions)
|
162 |
+
# Handle potential API key error during initialization
|
163 |
+
try:
|
164 |
+
agent_instance = MyLangChainAgent()
|
165 |
+
except ValueError as e:
|
166 |
+
print(f"ERROR initializing agent: {e}")
|
167 |
+
# Provide a dummy agent or exit if critical
|
168 |
+
agent_instance = None # Or raise SystemExit("Agent initialization failed")
|
169 |
+
|
170 |
+
def format_chat_history(history: List[List[Optional[str]]]) -> List[Tuple[Optional[str], Optional[str]]]:
|
171 |
+
"""Helper to format Gradio history for display."""
|
172 |
+
# Gradio's history format is List[List[user_msg | None, ai_msg | None]]
|
173 |
+
# We want List[Tuple[user_msg | None, ai_msg | None]] for Chatbot
|
174 |
+
formatted = []
|
175 |
+
for turn in history:
|
176 |
+
formatted.append(tuple(turn))
|
177 |
+
return formatted
|
178 |
+
|
179 |
+
|
180 |
+
async def fetch_and_display_question(api_url: str):
|
181 |
+
"""Calls the backend to get a random question."""
|
182 |
+
if not api_url:
|
183 |
+
return "Please enter the API URL.", "", "", gr.update(value=""), gr.update(value="") # Clear chat too
|
184 |
+
|
185 |
+
question_url = f"{api_url.strip('/')}/random-question"
|
186 |
+
print(f"Fetching question from: {question_url}")
|
187 |
try:
|
188 |
+
response = requests.get(question_url, timeout=10)
|
189 |
+
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
190 |
+
data = response.json()
|
191 |
+
task_id = data.get("task_id")
|
192 |
+
question_text = data.get("question")
|
193 |
+
if task_id and question_text:
|
194 |
+
print(f"Fetched Task ID: {task_id}")
|
195 |
+
# Return updates for Gradio components: Status, Task ID, Question Text, Clear Agent Answer, Clear Chat
|
196 |
+
return "Question fetched successfully!", task_id, question_text, "", [] # Clears answer and chat history
|
197 |
+
else:
|
198 |
+
return "Error: Invalid data format received from API.", "", "", "", []
|
199 |
+
except requests.exceptions.RequestException as e:
|
200 |
+
print(f"Error fetching question: {e}")
|
201 |
+
return f"Error fetching question: {e}", "", "", "", []
|
202 |
+
except Exception as e:
|
203 |
+
print(f"An unexpected error occurred: {e}")
|
204 |
+
return f"An unexpected error occurred: {e}", "", "", "", []
|
205 |
+
|
206 |
+
|
207 |
+
async def run_agent_interaction(
|
208 |
+
message: str,
|
209 |
+
history: List[List[Optional[str]]],
|
210 |
+
current_task_id: str,
|
211 |
+
# agent_instance: MyLangChainAgent # Agent passed via state potentially
|
212 |
+
):
|
213 |
+
"""Handles the chat interaction, runs the agent, yields steps, updates final answer state."""
|
214 |
+
if agent_instance is None:
|
215 |
+
yield "Agent not initialized. Please check API keys and restart."
|
216 |
+
return
|
217 |
+
|
218 |
+
if not current_task_id:
|
219 |
+
yield "Please fetch a question first using the button above."
|
220 |
+
return
|
221 |
+
|
222 |
+
# The 'message' here is the user's latest input in the chat.
|
223 |
+
# For this workflow, we assume the main input is the fetched question.
|
224 |
+
# We'll use the fetched question (implicitly stored) to run the agent.
|
225 |
+
# If you want interactive chat *about* the question, the logic needs adjustment.
|
226 |
+
|
227 |
+
# For simplicity, let's assume the user's message *is* the question or a prompt related to it.
|
228 |
+
# In the GAIA context, usually, the agent just runs on the provided question directly.
|
229 |
+
# We'll use the `current_task_id` to generate a unique thread_id for LangGraph memory.
|
230 |
+
thread_id = f"gaia_task_{current_task_id}_{os.urandom(4).hex()}"
|
231 |
+
|
232 |
+
print(f"Running agent for user message: {message[:50]}...")
|
233 |
+
history.append([message, None]) # Add user message to history
|
234 |
+
|
235 |
+
final_agent_answer = None
|
236 |
+
full_yielded_response = ""
|
237 |
+
|
238 |
+
# Use the agent's __call__ method
|
239 |
+
async for step in agent_instance(message, thread_id=thread_id):
|
240 |
+
if isinstance(step, str):
|
241 |
+
# Intermediate step (tool call, result, maybe stream chunk)
|
242 |
+
history[-1][1] = step # Update the AI's response in the last turn
|
243 |
+
yield format_chat_history(history) # Update chatbot UI
|
244 |
+
full_yielded_response = step # Track last yielded message
|
245 |
+
# If __call__ yielded dicts for streaming, handle here:
|
246 |
+
# elif isinstance(step, dict) and step.get("type") == "stream":
|
247 |
+
# history[-1][1] = (history[-1][1] or "") + step["content"]
|
248 |
+
# yield format_chat_history(history)
|
249 |
+
|
250 |
+
# After the loop, the `step` variable holds the return value (final answer)
|
251 |
+
final_agent_answer = step
|
252 |
+
print(f"Agent final answer received: {final_agent_answer[:100]}...")
|
253 |
+
|
254 |
+
# Update the history with the definitive final answer
|
255 |
+
if final_agent_answer:
|
256 |
+
history[-1][1] = final_agent_answer # Replace intermediate steps with final one
|
257 |
+
elif full_yielded_response:
|
258 |
+
# Fallback if final answer wasn't returned correctly but we yielded something
|
259 |
+
history[-1][1] = full_yielded_response
|
260 |
+
final_agent_answer = full_yielded_response # Use the last yielded message as answer
|
261 |
+
else:
|
262 |
+
history[-1][1] = "Agent did not produce a final answer."
|
263 |
+
final_agent_answer = "" # Ensure it's a string
|
264 |
+
|
265 |
+
# Yield the final state of the history and update the hidden state for the final answer
|
266 |
+
yield format_chat_history(history), final_agent_answer
|
267 |
+
|
268 |
+
|
269 |
+
def submit_to_leaderboard(
|
270 |
+
api_url: str,
|
271 |
+
username: str,
|
272 |
+
task_id: str,
|
273 |
+
agent_answer: str,
|
274 |
+
# agent_instance: MyLangChainAgent # Pass agent via state if needed
|
275 |
+
):
|
276 |
+
"""Submits the agent's answer and code to the FastAPI backend."""
|
277 |
+
if agent_instance is None:
|
278 |
+
return "Agent not initialized. Cannot submit."
|
279 |
+
if not api_url:
|
280 |
+
return "Please enter the API URL."
|
281 |
+
if not username:
|
282 |
+
return "Please enter your Hugging Face username."
|
283 |
+
if not task_id:
|
284 |
+
return "No task ID available. Please fetch a question first."
|
285 |
+
if agent_answer is None or agent_answer.strip() == "": # Check if None or empty
|
286 |
+
# Maybe allow submission of empty answer? Depends on requirements.
|
287 |
+
print("Warning: Submitting empty answer.")
|
288 |
+
# return "Agent has not provided an answer yet."
|
289 |
+
|
290 |
+
|
291 |
+
submit_url = f"{api_url.strip('/')}/submit"
|
292 |
+
print(f"Submitting to: {submit_url}")
|
293 |
+
|
294 |
+
# Get agent code
|
295 |
+
try:
|
296 |
+
agent_code = agent_instance.__repr__()
|
297 |
+
# print(f"Agent Code (first 200 chars):\n{agent_code[:200]}...") # Debug
|
298 |
+
except Exception as e:
|
299 |
+
print(f"Error getting agent representation: {e}")
|
300 |
+
return f"Error generating agent code for submission: {e}"
|
301 |
+
|
302 |
+
# Prepare submission data according to Pydantic model in FastAPI
|
303 |
+
submission_data = {
|
304 |
+
"username": username.strip(),
|
305 |
+
"agent_code": agent_code,
|
306 |
+
"answers": [
|
307 |
+
{
|
308 |
+
"task_id": task_id,
|
309 |
+
"submitted_answer": agent_answer # Use the stored final answer
|
310 |
+
}
|
311 |
+
# Add more answers here if submitting a batch
|
312 |
+
]
|
313 |
+
}
|
314 |
+
|
315 |
+
try:
|
316 |
+
response = requests.post(submit_url, json=submission_data, timeout=30)
|
317 |
+
response.raise_for_status()
|
318 |
+
result_data = response.json()
|
319 |
+
# Format the result nicely for display
|
320 |
+
result_message = (
|
321 |
+
f"Submission Successful!\n"
|
322 |
+
f"User: {result_data.get('username')}\n"
|
323 |
+
f"Score: {result_data.get('score')}\n"
|
324 |
+
f"Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}\n"
|
325 |
+
f"Message: {result_data.get('message')}\n"
|
326 |
+
f"Timestamp: {result_data.get('timestamp')}"
|
327 |
+
)
|
328 |
+
print("Submission successful.")
|
329 |
+
return result_message
|
330 |
+
except requests.exceptions.HTTPError as e:
|
331 |
+
# Try to get detail from response body if available
|
332 |
+
error_detail = e.response.text
|
333 |
+
try:
|
334 |
+
error_json = e.response.json()
|
335 |
+
error_detail = error_json.get('detail', error_detail)
|
336 |
+
except requests.exceptions.JSONDecodeError:
|
337 |
+
pass # Keep the raw text if not JSON
|
338 |
+
print(f"HTTP Error during submission: {e.response.status_code} - {error_detail}")
|
339 |
+
return f"Submission Failed (HTTP {e.response.status_code}): {error_detail}"
|
340 |
+
except requests.exceptions.RequestException as e:
|
341 |
+
print(f"Network error during submission: {e}")
|
342 |
+
return f"Submission Failed: Network error - {e}"
|
343 |
+
except Exception as e:
|
344 |
+
print(f"An unexpected error occurred during submission: {e}")
|
345 |
+
return f"Submission Failed: An unexpected error occurred - {e}"
|
346 |
+
|
347 |
+
|
348 |
+
# --- Build Gradio Interface using Blocks ---
|
349 |
+
with gr.Blocks() as demo:
|
350 |
+
gr.Markdown("# Agent Evaluation Interface")
|
351 |
+
gr.Markdown(
|
352 |
+
"Fetch a random question from the evaluation API, interact with the agent "
|
353 |
+
"(Note: the default agent answers weather questions, not GAIA), "
|
354 |
+
"and submit the agent's final answer to the leaderboard."
|
355 |
+
)
|
356 |
+
|
357 |
+
# --- State Variables ---
|
358 |
+
# Store current task info, agent's final answer, and the agent instance
|
359 |
+
current_task_id = gr.State("")
|
360 |
+
current_question_text = gr.State("")
|
361 |
+
current_agent_answer = gr.State("") # Stores the final answer string from the agent
|
362 |
+
# agent_state = gr.State(agent_instance) # Pass agent instance via state
|
363 |
+
|
364 |
+
with gr.Row():
|
365 |
+
api_url_input = gr.Textbox(label="FastAPI API URL", value=DEFAULT_API_URL)
|
366 |
+
hf_username_input = gr.Textbox(label="Hugging Face Username")
|
367 |
+
|
368 |
+
with gr.Row():
|
369 |
+
fetch_button = gr.Button("Get Random Question")
|
370 |
+
submission_status_display = gr.Textbox(label="Status", interactive=False) # For fetch status
|
371 |
+
|
372 |
+
with gr.Row():
|
373 |
+
question_display = gr.Textbox(label="Current Question", lines=3, interactive=False)
|
374 |
+
|
375 |
+
gr.Markdown("---")
|
376 |
+
gr.Markdown("## Agent Interaction")
|
377 |
+
|
378 |
+
chatbot = gr.Chatbot(label="Agent Conversation", height=400)
|
379 |
+
msg_input = gr.Textbox(label="Send a message to the Agent (or just observe)") # Input for chat
|
380 |
+
|
381 |
+
# Hidden Textbox to display the final extracted answer (optional, for clarity)
|
382 |
+
final_answer_display = gr.Textbox(label="Agent's Final Answer (Extracted)", interactive=False)
|
383 |
+
|
384 |
+
gr.Markdown("---")
|
385 |
+
gr.Markdown("## Submission")
|
386 |
+
with gr.Row():
|
387 |
+
submit_button = gr.Button("Submit Current Answer to Leaderboard")
|
388 |
+
|
389 |
+
submission_result_display = gr.Markdown(label="Submission Result", value="*Submit an answer to see the result here.*") # Use Markdown for better formatting
|
390 |
+
|
391 |
+
|
392 |
+
# --- Component Interactions ---
|
393 |
+
|
394 |
+
# Fetch Button Action
|
395 |
+
fetch_button.click(
|
396 |
+
fn=fetch_and_display_question,
|
397 |
+
inputs=[api_url_input],
|
398 |
+
outputs=[
|
399 |
+
submission_status_display, # Shows fetch status
|
400 |
+
current_task_id, # Updates hidden state
|
401 |
+
question_display, # Updates question text box
|
402 |
+
final_answer_display, # Clears old final answer
|
403 |
+
chatbot # Clears chat history
|
404 |
+
]
|
405 |
+
)
|
406 |
+
|
407 |
+
# Chat Submission Action (when user sends message in chat)
|
408 |
+
msg_input.submit(
|
409 |
+
fn=run_agent_interaction,
|
410 |
+
inputs=[
|
411 |
+
msg_input, # User message from chat input
|
412 |
+
chatbot, # Current chat history
|
413 |
+
current_task_id, # Current task ID from state
|
414 |
+
# agent_state # Pass agent instance state
|
415 |
+
],
|
416 |
+
outputs=[
|
417 |
+
chatbot, # Updated chat history
|
418 |
+
current_agent_answer # Update the hidden state holding the final answer
|
419 |
+
]
|
420 |
+
).then(
|
421 |
+
# After agent runs, update the visible "Final Answer" box from the state
|
422 |
+
lambda answer_state: answer_state,
|
423 |
+
inputs=[current_agent_answer],
|
424 |
+
outputs=[final_answer_display]
|
425 |
+
)
|
426 |
+
|
427 |
+
# Clear message input after submission
|
428 |
+
msg_input.submit(lambda: "", None, msg_input, queue=False)
|
429 |
+
|
430 |
+
|
431 |
+
# Submit Button Action
|
432 |
+
submit_button.click(
|
433 |
+
fn=submit_to_leaderboard,
|
434 |
+
inputs=[
|
435 |
+
api_url_input,
|
436 |
+
hf_username_input,
|
437 |
+
current_task_id,
|
438 |
+
current_agent_answer, # Use the stored final answer state
|
439 |
+
# agent_state # Pass agent instance state
|
440 |
+
],
|
441 |
+
outputs=[submission_result_display] # Display result message
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
if __name__ == "__main__":
|
446 |
+
if agent_instance is None:
|
447 |
+
print("\nFATAL: Agent could not be initialized. Gradio app will not run correctly.")
|
448 |
+
print("Please ensure OPENAI_API_KEY is set and valid.\n")
|
449 |
+
# Optionally exit here if agent is critical
|
450 |
+
# exit(1)
|
451 |
+
else:
|
452 |
+
print("Launching Gradio Interface...")
|
453 |
+
demo.launch(debug=True, server_name="0.0.0.0") # Share=False by default for security
|