Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect # To get source code for __repr__
|
5 |
-
import pandas as pd
|
6 |
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app
|
@@ -30,16 +30,24 @@ class BasicAgent:
|
|
30 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
return fixed_answer
|
32 |
|
|
|
|
|
|
|
33 |
def __repr__(self) -> str:
|
34 |
"""
|
35 |
Return the source code required to reconstruct this agent.
|
|
|
36 |
"""
|
37 |
imports = [
|
38 |
-
"import inspect\n"
|
39 |
]
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# --- Gradio UI and Logic ---
|
45 |
def get_current_script_content() -> str:
|
@@ -51,8 +59,9 @@ def get_current_script_content() -> str:
|
|
51 |
with open(script_path, 'r', encoding='utf-8') as f:
|
52 |
return f.read()
|
53 |
except NameError:
|
54 |
-
# __file__ is not defined (e.g., running in an interactive interpreter)
|
55 |
-
print("Warning: __file__ is not defined. Cannot read script content.")
|
|
|
56 |
return "# Agent code unavailable: __file__ not defined"
|
57 |
except FileNotFoundError:
|
58 |
print(f"Warning: Script file '{script_path}' not found.")
|
@@ -67,12 +76,28 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
67 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
68 |
and displays the results.
|
69 |
"""
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if profile:
|
72 |
username= f"{profile.username}"
|
73 |
-
|
74 |
else:
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
api_url = DEFAULT_API_URL
|
78 |
questions_url = f"{api_url}/questions"
|
@@ -81,33 +106,46 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
81 |
# 1. Instantiate the Agent
|
82 |
try:
|
83 |
agent = BasicAgent()
|
84 |
-
|
85 |
-
#
|
|
|
86 |
except Exception as e:
|
87 |
-
print(f"Error instantiating agent
|
88 |
return f"Error initializing agent: {e}", None
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# 2. Fetch All Questions
|
91 |
print(f"Fetching questions from: {questions_url}")
|
92 |
try:
|
93 |
response = requests.get(questions_url, timeout=15)
|
94 |
-
response.raise_for_status()
|
95 |
questions_data = response.json()
|
96 |
if not questions_data:
|
97 |
-
|
|
|
98 |
print(f"Fetched {len(questions_data)} questions.")
|
99 |
-
status_update = f"Fetched {len(questions_data)} questions. Running agent..."
|
100 |
-
# Yield intermediate status if using gr.update
|
101 |
except requests.exceptions.RequestException as e:
|
102 |
print(f"Error fetching questions: {e}")
|
103 |
return f"Error fetching questions: {e}", None
|
104 |
-
except
|
|
|
|
|
|
|
|
|
105 |
print(f"An unexpected error occurred fetching questions: {e}")
|
106 |
return f"An unexpected error occurred fetching questions: {e}", None
|
107 |
|
108 |
# 3. Run Agent on Each Question
|
109 |
results_log = [] # To store data for the results table
|
110 |
answers_payload = [] # To store data for the submission API
|
|
|
111 |
for item in questions_data:
|
112 |
task_id = item.get("task_id")
|
113 |
question_text = item.get("question")
|
@@ -129,31 +167,33 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
129 |
})
|
130 |
except Exception as e:
|
131 |
print(f"Error running agent on task {task_id}: {e}")
|
132 |
-
# Decide how to handle agent errors - skip? submit default?
|
133 |
-
# Here, we'll just log and potentially skip submission for this task if needed
|
134 |
results_log.append({
|
135 |
"Task ID": task_id,
|
136 |
"Question": question_text,
|
137 |
"Submitted Answer": f"AGENT ERROR: {e}"
|
138 |
})
|
139 |
-
|
|
|
140 |
|
141 |
if not answers_payload:
|
|
|
|
|
142 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
143 |
|
144 |
# 4. Prepare Submission
|
145 |
submission_data = {
|
146 |
"username": username.strip(),
|
147 |
-
"agent_code": agent_code,
|
148 |
"answers": answers_payload
|
149 |
}
|
150 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers..."
|
151 |
print(status_update)
|
152 |
|
153 |
# 5. Submit to Leaderboard
|
154 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
155 |
try:
|
156 |
-
|
|
|
157 |
response.raise_for_status()
|
158 |
result_data = response.json()
|
159 |
|
@@ -161,31 +201,38 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
161 |
final_status = (
|
162 |
f"Submission Successful!\n"
|
163 |
f"User: {result_data.get('username')}\n"
|
164 |
-
f"Overall Score: {result_data.get('score')}% "
|
165 |
-
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
|
166 |
-
f"Message: {result_data.get('message')}"
|
167 |
)
|
168 |
print("Submission successful.")
|
169 |
results_df = pd.DataFrame(results_log)
|
170 |
return final_status, results_df
|
171 |
|
172 |
except requests.exceptions.HTTPError as e:
|
173 |
-
error_detail = e.response.
|
174 |
try:
|
|
|
175 |
error_json = e.response.json()
|
176 |
-
error_detail
|
177 |
except requests.exceptions.JSONDecodeError:
|
178 |
-
|
179 |
-
|
|
|
180 |
print(status_message)
|
181 |
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
|
182 |
return status_message, results_df
|
|
|
|
|
|
|
|
|
|
|
183 |
except requests.exceptions.RequestException as e:
|
184 |
status_message = f"Submission Failed: Network error - {e}"
|
185 |
print(status_message)
|
186 |
results_df = pd.DataFrame(results_log)
|
187 |
return status_message, results_df
|
188 |
-
except Exception as e:
|
189 |
status_message = f"An unexpected error occurred during submission: {e}"
|
190 |
print(status_message)
|
191 |
results_df = pd.DataFrame(results_log)
|
@@ -196,25 +243,38 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
196 |
with gr.Blocks() as demo:
|
197 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
198 |
gr.Markdown(
|
199 |
-
"Please clone this space, then modify the code to
|
200 |
-
"
|
201 |
-
"
|
202 |
-
"submit all answers at once, and display the results."
|
203 |
)
|
204 |
|
205 |
gr.LoginButton()
|
206 |
|
207 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
208 |
|
209 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=
|
210 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
211 |
|
212 |
# --- Component Interaction ---
|
|
|
213 |
run_button.click(
|
214 |
fn=run_and_submit_all,
|
|
|
215 |
outputs=[status_output, results_table]
|
216 |
)
|
217 |
|
218 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
220 |
-
|
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect # To get source code for __repr__
|
5 |
+
import pandas as pd
|
6 |
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app
|
|
|
30 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
return fixed_answer
|
32 |
|
33 |
+
# __repr__ seems intended to get the *source* code, not just representation
|
34 |
+
# Let's keep it but note that get_current_script_content might be more robust
|
35 |
+
# if the class definition changes significantly or relies on external state.
|
36 |
def __repr__(self) -> str:
|
37 |
"""
|
38 |
Return the source code required to reconstruct this agent.
|
39 |
+
NOTE: This might be brittle. Using get_current_script_content is likely safer.
|
40 |
"""
|
41 |
imports = [
|
42 |
+
"import inspect\n"
|
43 |
]
|
44 |
+
try:
|
45 |
+
class_source = inspect.getsource(BasicAgent)
|
46 |
+
full_source = "\n".join(imports) + "\n" + class_source
|
47 |
+
return full_source
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error getting source code via inspect: {e}")
|
50 |
+
return f"# Could not get source via inspect: {e}"
|
51 |
|
52 |
# --- Gradio UI and Logic ---
|
53 |
def get_current_script_content() -> str:
|
|
|
59 |
with open(script_path, 'r', encoding='utf-8') as f:
|
60 |
return f.read()
|
61 |
except NameError:
|
62 |
+
# __file__ is not defined (e.g., running in an interactive interpreter or frozen app)
|
63 |
+
print("Warning: __file__ is not defined. Cannot read script content this way.")
|
64 |
+
# Fallback or alternative method could be added here if needed
|
65 |
return "# Agent code unavailable: __file__ not defined"
|
66 |
except FileNotFoundError:
|
67 |
print(f"Warning: Script file '{script_path}' not found.")
|
|
|
76 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
77 |
and displays the results.
|
78 |
"""
|
79 |
+
# --- Determine HF Space URL and Print Environment Info ---
|
80 |
+
space_host = os.getenv("SPACE_HOST")
|
81 |
+
hf_space_url = "Runtime: Locally or unknown environment (SPACE_HOST env var not found)"
|
82 |
+
if space_host:
|
83 |
+
# Construct the standard URL format for HF Spaces
|
84 |
+
hf_space_url = f"Runtime: Hugging Face Space (https://{space_host}.hf.space)"
|
85 |
+
|
86 |
+
# Print runtime info at the start of the function execution
|
87 |
+
print("\n" + "="*60)
|
88 |
+
print("Executing run_and_submit_all function...")
|
89 |
+
print(hf_space_url) # Print the determined runtime URL
|
90 |
+
# --- End Environment Info ---
|
91 |
+
|
92 |
if profile:
|
93 |
username= f"{profile.username}"
|
94 |
+
print(f"User logged in: {username}")
|
95 |
else:
|
96 |
+
print("User not logged in.")
|
97 |
+
print("="*60 + "\n") # Close the separator block
|
98 |
+
return "Please Login to Hugging Face with the button.", None # Return early
|
99 |
+
|
100 |
+
print("="*60 + "\n") # Separator after initial checks if logged in
|
101 |
|
102 |
api_url = DEFAULT_API_URL
|
103 |
questions_url = f"{api_url}/questions"
|
|
|
106 |
# 1. Instantiate the Agent
|
107 |
try:
|
108 |
agent = BasicAgent()
|
109 |
+
# Using get_current_script_content() is likely more reliable for submission
|
110 |
+
# agent_code = agent.__repr__() # Keep if needed, but prefer file content
|
111 |
+
# print(f"Agent Code via __repr__ (first 200): {agent_code[:200]}...") # Debug
|
112 |
except Exception as e:
|
113 |
+
print(f"Error instantiating agent: {e}")
|
114 |
return f"Error initializing agent: {e}", None
|
115 |
+
|
116 |
+
# Get agent code by reading the current script file - generally more robust
|
117 |
+
agent_code = get_current_script_content()
|
118 |
+
if agent_code.startswith("# Agent code unavailable"):
|
119 |
+
print("Warning: Using potentially incomplete agent code due to reading error.")
|
120 |
+
# Optional: Fall back to agent.__repr__() if needed
|
121 |
+
# agent_code = agent.__repr__()
|
122 |
+
|
123 |
# 2. Fetch All Questions
|
124 |
print(f"Fetching questions from: {questions_url}")
|
125 |
try:
|
126 |
response = requests.get(questions_url, timeout=15)
|
127 |
+
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
128 |
questions_data = response.json()
|
129 |
if not questions_data:
|
130 |
+
print("Fetched questions list is empty.")
|
131 |
+
return "Fetched questions list is empty or invalid format.", None
|
132 |
print(f"Fetched {len(questions_data)} questions.")
|
133 |
+
# status_update = f"Fetched {len(questions_data)} questions. Running agent..." # For yield/streaming
|
|
|
134 |
except requests.exceptions.RequestException as e:
|
135 |
print(f"Error fetching questions: {e}")
|
136 |
return f"Error fetching questions: {e}", None
|
137 |
+
except requests.exceptions.JSONDecodeError as e:
|
138 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
139 |
+
print(f"Response text: {response.text[:500]}") # Log response text for debugging
|
140 |
+
return f"Error decoding server response for questions: {e}", None
|
141 |
+
except Exception as e: # Catch other potential errors
|
142 |
print(f"An unexpected error occurred fetching questions: {e}")
|
143 |
return f"An unexpected error occurred fetching questions: {e}", None
|
144 |
|
145 |
# 3. Run Agent on Each Question
|
146 |
results_log = [] # To store data for the results table
|
147 |
answers_payload = [] # To store data for the submission API
|
148 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
149 |
for item in questions_data:
|
150 |
task_id = item.get("task_id")
|
151 |
question_text = item.get("question")
|
|
|
167 |
})
|
168 |
except Exception as e:
|
169 |
print(f"Error running agent on task {task_id}: {e}")
|
|
|
|
|
170 |
results_log.append({
|
171 |
"Task ID": task_id,
|
172 |
"Question": question_text,
|
173 |
"Submitted Answer": f"AGENT ERROR: {e}"
|
174 |
})
|
175 |
+
# Decide if you want to submit agent errors or skip:
|
176 |
+
# answers_payload.append({"task_id": task_id, "submitted_answer": f"AGENT ERROR: {e}"})
|
177 |
|
178 |
if not answers_payload:
|
179 |
+
print("Agent did not produce any answers to submit.")
|
180 |
+
# Still show results log even if nothing submitted
|
181 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
182 |
|
183 |
# 4. Prepare Submission
|
184 |
submission_data = {
|
185 |
"username": username.strip(),
|
186 |
+
"agent_code": agent_code, # Using the code read from file
|
187 |
"answers": answers_payload
|
188 |
}
|
189 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
190 |
print(status_update)
|
191 |
|
192 |
# 5. Submit to Leaderboard
|
193 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
194 |
try:
|
195 |
+
# Ensure submission_data is serializable, agent_code should be string
|
196 |
+
response = requests.post(submit_url, json=submission_data, timeout=60) # Increased timeout further
|
197 |
response.raise_for_status()
|
198 |
result_data = response.json()
|
199 |
|
|
|
201 |
final_status = (
|
202 |
f"Submission Successful!\n"
|
203 |
f"User: {result_data.get('username')}\n"
|
204 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
205 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
206 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
207 |
)
|
208 |
print("Submission successful.")
|
209 |
results_df = pd.DataFrame(results_log)
|
210 |
return final_status, results_df
|
211 |
|
212 |
except requests.exceptions.HTTPError as e:
|
213 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
214 |
try:
|
215 |
+
# Try to get more specific error detail from JSON response body
|
216 |
error_json = e.response.json()
|
217 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
218 |
except requests.exceptions.JSONDecodeError:
|
219 |
+
# If response is not JSON, use the raw text
|
220 |
+
error_detail += f" Response: {e.response.text[:500]}" # Limit length
|
221 |
+
status_message = f"Submission Failed: {error_detail}"
|
222 |
print(status_message)
|
223 |
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
|
224 |
return status_message, results_df
|
225 |
+
except requests.exceptions.Timeout:
|
226 |
+
status_message = "Submission Failed: The request timed out."
|
227 |
+
print(status_message)
|
228 |
+
results_df = pd.DataFrame(results_log)
|
229 |
+
return status_message, results_df
|
230 |
except requests.exceptions.RequestException as e:
|
231 |
status_message = f"Submission Failed: Network error - {e}"
|
232 |
print(status_message)
|
233 |
results_df = pd.DataFrame(results_log)
|
234 |
return status_message, results_df
|
235 |
+
except Exception as e: # Catch unexpected errors during submission phase
|
236 |
status_message = f"An unexpected error occurred during submission: {e}"
|
237 |
print(status_message)
|
238 |
results_df = pd.DataFrame(results_log)
|
|
|
243 |
with gr.Blocks() as demo:
|
244 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
245 |
gr.Markdown(
|
246 |
+
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. " # Clarified instructions
|
247 |
+
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
248 |
+
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
|
|
249 |
)
|
250 |
|
251 |
gr.LoginButton()
|
252 |
|
253 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
254 |
|
255 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Increased lines
|
256 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, max_rows=10) # Added max_rows
|
257 |
|
258 |
# --- Component Interaction ---
|
259 |
+
# Use the profile information directly from the LoginButton state (implicitly passed)
|
260 |
run_button.click(
|
261 |
fn=run_and_submit_all,
|
262 |
+
# Input is implicitly the profile data from LoginButton state
|
263 |
outputs=[status_output, results_table]
|
264 |
)
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
268 |
+
# Check for SPACE_HOST at startup for information
|
269 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
270 |
+
if space_host_startup:
|
271 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
272 |
+
print(f" App should be available at: https://{space_host_startup}.hf.space")
|
273 |
+
else:
|
274 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally or not on standard HF Space runtime).")
|
275 |
+
print(" App will likely be available at local URLs printed by Gradio below.")
|
276 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
277 |
+
|
278 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
279 |
+
# Set share=False as the primary access point is the HF Space URL
|
280 |
+
demo.launch(debug=True, share=False)
|