Spaces:
Sleeping
Sleeping
File size: 9,340 Bytes
9a7dd44 0e6f2ea 6c49c31 9a7dd44 fa27543 0e6f2ea 9a7dd44 6c49c31 9a7dd44 6c49c31 0e6f2ea 6c49c31 0e6f2ea 6c49c31 0e6f2ea 6c49c31 0e6f2ea 6c49c31 9a7dd44 8535ce3 fa27543 8535ce3 fa27543 8535ce3 6c49c31 5258caa 6c49c31 9a7dd44 8535ce3 fa27543 8535ce3 0e6f2ea 8535ce3 0e6f2ea 8535ce3 fa27543 8535ce3 9a7dd44 fa27543 9a7dd44 0e6f2ea 9a7dd44 0e6f2ea fa27543 9a7dd44 8535ce3 9a7dd44 fa27543 9a7dd44 8535ce3 9a7dd44 8535ce3 9a7dd44 a9e7554 8535ce3 9a7dd44 5258caa 0e6f2ea 5258caa a9e7554 5258caa a9e7554 6c49c31 a9e7554 5258caa 14163c9 6c49c31 a9e7554 6c49c31 0e6f2ea 6c49c31 0e6f2ea 6c49c31 0e6f2ea a9e7554 0e6f2ea 9a7dd44 8535ce3 9a7dd44 8535ce3 9a7dd44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from gradio_bbox_annotator import BBoxAnnotator
import json
import os
from pathlib import Path
from PIL import Image
from io import BytesIO
import tempfile
import shutil
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define categories and their limits
CATEGORY_LIMITS = {
"advertisement": 1, # Maximum 1 advertisement annotation per image
"text": 2 # Maximum 2 text annotations per image
}
CATEGORIES = list(CATEGORY_LIMITS.keys())
MAX_SIZE = [1024, 1024] # Maximum width and height for resized images
class ImageProcessor:
def __init__(self):
# Create a persistent directory for resized images
self.base_dir = os.path.join(tempfile.gettempdir(), "annotation_tool")
self.resized_dir = os.path.join(self.base_dir, "resized_images")
self._setup_directories()
logger.info(f"Initialized ImageProcessor with directory: {self.base_dir}")
def _setup_directories(self):
"""Create necessary directories if they don't exist"""
os.makedirs(self.resized_dir, exist_ok=True)
logger.info(f"Set up directories: {self.resized_dir}")
def resize_image(self, image_path):
"""Resize image and save to persistent directory"""
try:
logger.info(f"Processing image: {image_path}")
# Read original image
with open(image_path, "rb") as f:
img = Image.open(BytesIO(f.read()))
img.thumbnail(MAX_SIZE, Image.Resampling.LANCZOS)
# Create a unique filename for the resized image
original_filename = os.path.basename(image_path)
resized_filename = f"resized_{original_filename}"
resized_path = os.path.join(self.resized_dir, resized_filename)
# Save resized image
img.save(resized_path)
logger.info(f"Saved resized image to: {resized_path}")
return resized_path
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
raise
class AnnotationManager:
def __init__(self):
self.annotations = {}
self.image_processor = ImageProcessor()
def validate_annotations(self, bbox_data):
"""Validate the annotation data and return (is_valid, error_message)"""
if not bbox_data or not isinstance(bbox_data, tuple):
return False, "No image or annotations provided"
image_path, annotations = bbox_data
if not isinstance(image_path, str):
return False, "Invalid image format"
if not annotations:
return False, "No annotations drawn"
# Count annotations per category
category_counts = {cat: 0 for cat in CATEGORIES}
for ann in annotations:
if len(ann) != 5:
return False, "Invalid annotation format"
y1, y2, x1, x2, label = ann
# Validate coordinates
if any(not isinstance(coord, (int, float)) for coord in [y1, y2, x1, x2]):
return False, "Invalid coordinate values"
# Validate label
if not label or label not in CATEGORIES:
return False, f"Invalid or missing label. Must be one of: {', '.join(CATEGORIES)}"
# Count this annotation
category_counts[label] += 1
# Check category limits
for category, count in category_counts.items():
limit = CATEGORY_LIMITS[category]
if count > limit:
return False, f"Too many {category} annotations. Maximum allowed: {limit}"
return True, ""
def process_upload(self, image_path):
"""Process uploaded image"""
if not isinstance(image_path, (str, bytes, os.PathLike)):
logger.warning(f"Invalid image path type: {type(image_path)}")
return None
try:
logger.info(f"Processing upload: {image_path}")
resized_path = self.image_processor.resize_image(image_path)
logger.info(f"Successfully processed upload: {resized_path}")
return resized_path
except Exception as e:
logger.error(f"Error in process_upload: {str(e)}")
return None
def add_annotation(self, bbox_data):
"""Add or update annotations for an image"""
is_valid, error_msg = self.validate_annotations(bbox_data)
if not is_valid:
return self.get_json_annotations(), f"❌ Error: {error_msg}"
image_path, annotations = bbox_data
# Use original filename (remove 'resized_' prefix)
filename = os.path.basename(image_path)
if filename.startswith("resized_"):
filename = filename[8:]
formatted_annotations = []
for ann in annotations:
y1, y2, x1, x2, label = ann
formatted_annotations.append({
"annotation": [y1, y2, x1, x2],
"label": label
})
self.annotations[filename] = formatted_annotations
# Count annotations by type
counts = {cat: sum(1 for ann in annotations if ann[4] == cat) for cat in CATEGORIES}
counts_str = ", ".join(f"{count} {cat}" for cat, count in counts.items())
success_msg = f"✅ Successfully saved for {filename}: {counts_str}"
return self.get_json_annotations(), success_msg
def get_json_annotations(self):
"""Get all annotations as formatted JSON string"""
return json.dumps(self.annotations, indent=2)
def clear_annotations(self):
"""Clear all annotations"""
self.annotations = {}
return "", "🗑️ All annotations cleared"
def create_interface():
annotation_mgr = AnnotationManager()
with gr.Blocks() as demo:
gr.Markdown(f"""
# Advertisement and Text Annotation Tool
**Instructions:**
1. Upload an image (will be automatically resized to max {MAX_SIZE[0]}x{MAX_SIZE[1]})
2. Draw bounding boxes and select the appropriate label
3. Click 'Save Annotations' to add to the collection
4. Repeat for all images
5. Copy the combined JSON when finished
**Annotation Limits per Image:**
- advertisement: Maximum 1 annotation
- text: Maximum 2 annotations
""")
with gr.Row():
with gr.Column(scale=2):
bbox_input = BBoxAnnotator(
show_label=True,
label="Draw Bounding Boxes",
show_download_button=True,
interactive=True,
categories=CATEGORIES
)
with gr.Column(scale=1):
json_output = gr.TextArea(
label="Combined Annotations JSON",
interactive=True,
lines=15,
show_copy_button=True
)
with gr.Row():
save_btn = gr.Button("Save Current Image Annotations", variant="primary")
clear_btn = gr.Button("Clear All Annotations", variant="secondary")
# Add status message
status_msg = gr.Markdown(label="Status")
# Event handlers
def handle_image_upload(bbox_data):
try:
if not bbox_data or not isinstance(bbox_data, tuple):
return None, "No image uploaded"
image_path, annotations = bbox_data
if not image_path:
return None, "No image path provided"
logger.info(f"Handling upload for: {image_path}")
resized_path = annotation_mgr.process_upload(image_path)
if resized_path and os.path.exists(resized_path):
logger.info(f"Processed image path: {resized_path}")
# Return the resized path and keep any existing annotations
return (resized_path, annotations)
else:
error_msg = "Failed to process image"
logger.error(error_msg)
return None, error_msg
except Exception as e:
error_msg = f"Error in upload handler: {str(e)}"
logger.error(error_msg)
return None, error_msg
# Handle image upload and resizing
bbox_input.upload(
fn=handle_image_upload,
inputs=[bbox_input],
outputs=[bbox_input]
)
save_btn.click(
fn=annotation_mgr.add_annotation,
inputs=[bbox_input],
outputs=[json_output, status_msg]
)
clear_btn.click(
fn=annotation_mgr.clear_annotations,
inputs=[],
outputs=[json_output, status_msg]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |