VoiceStar / data /emilia_preprocessing /step4_construct_manifest.py
mrfakename's picture
Upload 51 files
82bc972 verified
# construct manifest file for training, note that we only have one train split
# also create neighbors folder for each sample, which is simply done through speaker label in the original manifest where each file has rows
# path\tdistance\tduration
# where distance is always 0 because we don't know the distance between the samples
# waiting on Yushen Chen to provide data filtering approach
import sys, copy
import os, random, numpy as np, socket
import json
import tqdm
from multiprocessing import Pool
import glob, os
from collections import defaultdict
def write_jsonl(data, fn):
with open(fn, "w") as file:
for entry in data:
file.write(json.dumps(entry, ensure_ascii=False) + "\n")
def read_jsonl(file_path):
cur_data = []
with open(file_path, 'r', encoding='utf-8-sig') as file:
for line in file:
cur_data.append(json.loads(line.strip()))
return cur_data
def repetition_found(text, length=2, tolerance=10):
pattern_count = defaultdict(int)
for i in range(len(text) - length + 1):
pattern = text[i : i + length]
pattern_count[pattern] += 1
for pattern, count in pattern_count.items():
if count > tolerance:
return True
return False
out_en = {
"EN_B00013_S00913",
"EN_B00042_S00120",
"EN_B00055_S04111",
"EN_B00061_S00693",
"EN_B00061_S01494",
"EN_B00061_S03375",
"EN_B00059_S00092",
"EN_B00111_S04300",
"EN_B00100_S03759",
"EN_B00087_S03811",
"EN_B00059_S00950",
"EN_B00089_S00946",
"EN_B00078_S05127",
"EN_B00070_S04089",
"EN_B00074_S09659",
"EN_B00061_S06983",
"EN_B00061_S07060",
"EN_B00059_S08397",
"EN_B00082_S06192",
"EN_B00091_S01238",
"EN_B00089_S07349",
"EN_B00070_S04343",
"EN_B00061_S02400",
"EN_B00076_S01262",
"EN_B00068_S06467",
"EN_B00076_S02943",
"EN_B00064_S05954",
"EN_B00061_S05386",
"EN_B00066_S06544",
"EN_B00076_S06944",
"EN_B00072_S08620",
"EN_B00076_S07135",
"EN_B00076_S09127",
"EN_B00065_S00497",
"EN_B00059_S06227",
"EN_B00063_S02859",
"EN_B00075_S01547",
"EN_B00061_S08286",
"EN_B00079_S02901",
"EN_B00092_S03643",
"EN_B00096_S08653",
"EN_B00063_S04297",
"EN_B00063_S04614",
"EN_B00079_S04698",
"EN_B00104_S01666",
"EN_B00061_S09504",
"EN_B00061_S09694",
"EN_B00065_S05444",
"EN_B00063_S06860",
"EN_B00065_S05725",
"EN_B00069_S07628",
"EN_B00083_S03875",
"EN_B00071_S07665",
"EN_B00071_S07665",
"EN_B00062_S04187",
"EN_B00065_S09873",
"EN_B00065_S09922",
"EN_B00084_S02463",
"EN_B00067_S05066",
"EN_B00106_S08060",
"EN_B00073_S06399",
"EN_B00073_S09236",
"EN_B00087_S00432",
"EN_B00085_S05618",
"EN_B00064_S01262",
"EN_B00072_S01739",
"EN_B00059_S03913",
"EN_B00069_S04036",
"EN_B00067_S05623",
"EN_B00060_S05389",
"EN_B00060_S07290",
"EN_B00062_S08995",
}
en_filters = ["ا", "い", "て"]
from multiprocessing import Pool
def process_meta_item(item, root, sub_root, audio_folder, audio_ext, text_ext):
global filtered_duration, filtered_count, total_duration, total_count
# Data filtering following Yushen's approach
if (
item["wav"].split("/")[-1] in out_en
or any(t in item["text"] for t in en_filters)
or repetition_found(item["text"], length=4)
):
return None, item["duration"], 1, 0, 0, (None, None) # Return filtered results
# Trim leading space from text if exists
if item["text"].startswith(" "):
item["text"] = item["text"][1:]
# write text to text file
text_fn = os.path.join(root, sub_root, audio_folder, item["wav"].replace(audio_ext, text_ext))
os.makedirs(os.path.dirname(text_fn), exist_ok=True)
with open(text_fn, "w") as f:
f.write(item["text"])
# spk2info[item["speaker"]].append(item)
return (
f"{item['wav']}\t{item['duration']}\n",
0,
0,
item["duration"],
1,
(item['speaker'], item)
) # Return processed results
def parallel_process_meta(meta, root, sub_root, audio_folder, num_workers, audio_ext, text_ext):
with Pool(num_workers) as pool:
results = pool.starmap(
process_meta_item,
[(item, root, sub_root, audio_folder, audio_ext, text_ext) for item in meta],
)
processed_items = []
spkitem = []
filtered_duration = 0
filtered_count = 0
total_duration = 0
total_count = 0
for result in results:
if result[0]: # If the item was processed
processed_items.append(result[0])
filtered_duration += result[1]
filtered_count += result[2]
total_duration += result[3]
total_count += result[4]
spkitem.append(result[5])
return processed_items, filtered_duration, filtered_count, total_duration, total_count, spkitem
def main(
root: str = "/data/scratch/pyp/datasets/emilia",
sub_root: str = "preprocessed",
audio_folder: str = "audio",
manifest_folder: str = "manifest_for_codec",
neighbors_folder: str = "neighbors",
audio_ext: str = ".mp3",
text_ext: str = ".txt",
num_workers: int = 8, # Specify the number of workers
):
# Find the segments that are untarred
all_fns = [
item
for item in glob.glob(f"{root}/{sub_root}/{audio_folder}/*")
if os.path.basename(item).startswith("EN_") and os.path.isdir(item)
]
print(f"found {len(all_fns)} untarred segments")
print(f"{all_fns[:3]}")
res = []
total_duration = 0
total_count = 0
filtered_duration = 0
filtered_count = 0
for fn in tqdm.tqdm(all_fns, desc="overall progress"):
spk2info = defaultdict(list)
metafn = os.path.join(root, "EN", os.path.basename(fn) + ".jsonl")
meta = read_jsonl(metafn)
# Parallel process metadata
processed_items, fd, fc, td, tc, spkitem = parallel_process_meta(
meta, root, sub_root, audio_folder, num_workers, audio_ext, text_ext
)
# Aggregate results
res.extend(processed_items)
filtered_duration += fd
filtered_count += fc
total_duration += td
total_count += tc
for spk, item in spkitem:
if spk:
spk2info[spk].append(item)
# Save neighbor files
for spk in spk2info:
for item in spk2info[spk]:
neighbor_fn = os.path.join(
root,
sub_root,
neighbors_folder,
item["wav"].replace(audio_ext, text_ext),
)
os.makedirs(os.path.dirname(neighbor_fn), exist_ok=True)
tobe_write = [f"{neighbor_item['wav'].replace(audio_ext, text_ext)}\t0\t{neighbor_item['duration']}\n" for neighbor_item in spk2info[spk] if neighbor_item["wav"] != item["wav"]]
if tobe_write:
with open(neighbor_fn, "w") as f:
f.writelines(tobe_write)
print(
f"total duration: {total_duration / 3600:.2f} hours, total count: {total_count}"
)
print(
f"filtered duration: {filtered_duration / 3600:.2f} hours, filtered count: {filtered_count}"
)
save_fn = os.path.join(root, sub_root, manifest_folder, "train.txt")
os.makedirs(os.path.dirname(save_fn), exist_ok=True)
with open(save_fn, "w") as f:
for item in res:
f.write(item)
if __name__ == "__main__":
import fire
fire.Fire(main)