Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,447 Bytes
82bc972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
import time, sys, subprocess, json, re
from pathlib import Path
import os, random
import torch
import math, pickle
from tqdm import tqdm
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
import torch.nn as nn
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
import copy
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from torch.utils.data.distributed import DistributedSampler
import logging
# from data import librilight, gigaspeech, gigaspeech_waveform
from data import combined_dataset
from models import voice_star
from .trainer_utils import DistributedDynamicBatchSampler, StatefulDistributedSampler, StatefulSampler, AverageMeter, print_model_info
from .optim import ScaledAdam, Eden
import run_gen
import wandb, socket
class Trainer:
def __init__(self, args, world_size, rank, local_rank):
self.start_time = time.time()
self.args = args
if self.args.val_max_num_tokens == None:
self.args.val_max_num_tokens = self.args.max_num_tokens
self.world_size, self.rank, self.local_rank = world_size, rank, local_rank
self.device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu")
if self.rank == 0:
self.writer = SummaryWriter(args.exp_dir)
self.wandb = wandb.init(project="voice_editor", name=args.exp_dir.split("/")[-1], config=args, dir=args.exp_dir, entity=self.args.wandb_entity)
self.seed_everything(seed=self.args.seed)
self.meters = self._setup_meters()
self.progress, self.total_progress = self._setup_progress()
self.model, self.trainables, self.optim_states, self.scheduler_states, self.phn2num = self._setup_models()
self.train_dataset_length, self.train_sampler, self.train_loader, self.valid_loader = self._setup_dataloader() # both are use DistributedSampler, train sampler is stateful
if self.args.num_steps != None:
self.total_step = self.args.num_steps
self.args.num_epochs = math.ceil(self.total_step / math.floor(self.train_dataset_length / self.args.batch_size)) if not self.args.dynamic_batching else None
else:
self.total_step = int(math.floor(self.train_dataset_length / self.args.batch_size))*self.args.num_epochs
self.optimizer, self.scheduler = self._setup_optimizer()
self.scaler = torch.cuda.amp.GradScaler()
self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.local_rank], find_unused_parameters=False)
self.early_stop_accu_steps = 0
if self.rank == 0:
if self.args.dynamic_batching:
logging.info(f"max number of tokens per GPU in a training batch: {self.args.max_num_tokens}, max number of tokens per GPU in a inference batch: {self.args.val_max_num_tokens}")
else:
logging.info(f"batch size (per gpu): {self.args.batch_size}")
self.args.inference_every_n_steps = getattr(self.args, "inference_every_n_steps", self.args.val_every_n_steps*5)
assert self.args.inference_every_n_steps > self.args.val_every_n_steps and self.args.inference_every_n_steps % self.args.val_every_n_steps == 0, "inference_every_n_steps should be divisible by val_every_n_steps, otherwise the code will not get a chance to run inference"
def train(self):
flag = True
skip_flag = False
data_start_time = time.time()
if self.progress['step'] >= self.total_step:
if self.rank == 0:
self.writer.close()
self.wandb.finish()
return
while flag:
self.train_sampler.set_epoch(self.progress['epoch'])
for i, batch in enumerate(self.train_loader):
if len(batch['y_lens']) < self.args.gradient_accumulation_steps:
continue
data_end_time = time.time()
self.model.train()
if self.progress['step'] >= getattr(self.args, "uniform_weight_start_step", 1e50):
if self.progress['step'] == getattr(self.args, "uniform_weight_start_step", 1e50) and self.rank == 0:
logging.info("NOTE: start using uniform weight from step: {}".format(self.progress['step']))
self.args.codebook_weight = [2.5,2,1.5,0.6]
self.model.module.args.codebook_weight = [2.5,2,1.5,0.6]
if self.progress['step'] >= self.total_step:
dist.barrier()
flag = False
self.validate_and_save()
if self.rank == 0:
self.writer.close()
self.wandb.finish()
break
if isinstance(self.scheduler, Eden):
self.scheduler.step_epoch(self.progress['step']//self.args.pseudo_epoch_size + 1)
if self.args.optimizer_name == "ScaledAdam":
cur_lr = self.scheduler.get_last_lr()[0]
else:
lrs = [param_group['lr'] for param_group in self.optimizer.param_groups]
assert lrs[0] == lrs[1]
cur_lr = lrs[0]
if self.rank == 0 and self.progress['step'] % self.args.tb_write_every_n_steps == 0:
self.writer.add_scalar("train/lr", cur_lr, self.progress['step'])
self.wandb.log({"train/lr": cur_lr}, step=self.progress['step'])
all_inds = list(range(len(batch['y'])))
sum_losses = 0
sum_top10acc = 0
sum_ntoken = 0
sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]
# extra losses
sum_extra_losses = {}
# when using prompt-based training, it's likely that due to prompt, the total length gets much longer, which make effective batch size in each accumulation step much bigger and then lead to OOM.
# therefore we re-calculate graduent_accumulation_steps based on the effective batch size
if self.args.neighbor_prompt_prob > 0:
effective_batch_size = self.args.max_num_tokens // self.args.gradient_accumulation_steps
total_batch_size = sum(batch['y_lens']).item()
cur_gradient_accumulation_steps = max(self.args.gradient_accumulation_steps, total_batch_size // effective_batch_size)
gas = torch.tensor(cur_gradient_accumulation_steps, dtype=torch.int, device=self.local_rank)
dist.all_reduce(gas, op=dist.ReduceOp.MAX)
cur_gradient_accumulation_steps = gas.item()
len_batch = torch.tensor(len(batch['y']), dtype=torch.int, device=self.local_rank)
dist.all_reduce(len_batch, op=dist.ReduceOp.MIN)
len_batch = len_batch.item()
cur_gradient_accumulation_steps = min(cur_gradient_accumulation_steps, len_batch)
# for those that cur_gradient_accumulation_steps * effective_batch_size < total_batch_size, we only use the first cur_gradient_accumulation_steps * effective_batch_size samples
cur_len = 0
final_all_inds = []
pointer = 0
while cur_len < self.args.max_num_tokens and pointer < len(all_inds):
cur_len += batch['y_lens'][pointer]
final_all_inds.append(all_inds[pointer])
pointer += 1
all_inds = final_all_inds
else:
cur_gradient_accumulation_steps = self.args.gradient_accumulation_steps
sum_losses_local = 0.0
sum_top10acc_local = 0.0
sum_entropy_loss_local = 0.0
sum_ctc_loss_local = 0.0
sum_ntoken_local = 0.0
sum_top10acc_cbi_local = [0.0 for _ in range(self.args.n_codebooks)]
global_nan_flag = 0
for j in range(cur_gradient_accumulation_steps):
cur_ind = all_inds[j::cur_gradient_accumulation_steps]
cur_batch = {key: batch[key][cur_ind] for key in batch}
# Automatic casting
if self.args.precision == "float16":
precision_used = torch.float16
elif self.args.precision in ["bf16", "bfloat16"]:
precision_used = torch.bfloat16
else:
precision_used = torch.float32
with torch.amp.autocast('cuda', dtype=precision_used):
out = self.model(cur_batch, calc_loss=True)
if out is None:
continue
if torch.isnan(out['loss']).any():
local_nan_flag = torch.tensor(1, device=self.local_rank)
else:
local_nan_flag = torch.tensor(0, device=self.local_rank)
# All ranks check if *any* rank got a NaN
dist.all_reduce(local_nan_flag, op=dist.ReduceOp.SUM)
global_nan_flag = local_nan_flag.item()
if global_nan_flag > 0:
# Now *all* ranks break at the same j
logging.info(f"rank: {self.rank}. Loss at micro-batch {j} in step {self.progress['step']} was NaN on at least one rank; skipping.")
break
# Accumulate local values
record_loss = out['loss'].detach()
top10acc = out['top10acc'].detach()
effective_ntoken = out['effective_ntoken'].detach()
sum_losses_local += record_loss.item()
sum_top10acc_local += top10acc.item()
sum_ntoken_local += effective_ntoken.item()
# Optional losses
if 'entropy_loss' in out:
sum_entropy_loss_local += out['entropy_loss'].detach().item()
if 'ctc_loss' in out:
sum_ctc_loss_local += out['ctc_loss'].detach().item()
# Codebook accuracy
if 'top10acc_by_codebook' in out:
for cb in range(self.args.n_codebooks):
sum_top10acc_cbi_local[cb] += out['top10acc_by_codebook'][cb].detach().item()
# Backprop on this micro-batch
if self.args.optimizer_name == "ScaledAdam":
self.scaler.scale(out['loss']).backward()
else:
self.scaler.scale(out['loss'] / out['effective_ntoken']).backward()
if global_nan_flag > 0:
# If *any* rank had NaN, skip this step
logging.info(f"rank: {self.rank}. Loss at one micro-batch in step {self.progress['step']} was NaN on at least one rank; skipping.")
self.progress['step'] += 1
self.progress['cur_step'] += 1
self.optimizer.zero_grad()
continue
# Otherwise, do one big reduce for the summed metrics
metrics_tensor = torch.tensor([
sum_losses_local,
sum_top10acc_local,
sum_entropy_loss_local,
sum_ctc_loss_local,
sum_ntoken_local
], device=self.local_rank, dtype=torch.float32)
dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)
# Also reduce the codebook array in one shot if needed
codebook_tensor = torch.tensor(sum_top10acc_cbi_local, device=self.local_rank, dtype=torch.float32)
dist.all_reduce(codebook_tensor, op=dist.ReduceOp.SUM)
# Convert them back to Python scalars
sum_losses = metrics_tensor[0].item()
sum_top10acc = metrics_tensor[1].item()
sum_entropy_loss = metrics_tensor[2].item()
sum_ctc_loss = metrics_tensor[3].item()
sum_ntoken = metrics_tensor[4].item()
sum_top10acc_cbi = codebook_tensor.tolist()
if self.args.optimizer_name != "ScaledAdam":
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.gradient_clip_val)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.args.optimizer_name == "ScaledAdam":
self.scheduler.step_batch(self.progress['step'])
else:
self.scheduler.step()
# logging
if self.rank == 0:
average_loss = sum_losses / sum_ntoken
average_top10acc = sum_top10acc / sum_ntoken
average_top10acc_cbi = [sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks for cb in range(self.args.n_codebooks)]
self.meters['train_loss'].update(average_loss, batch['x'].shape[0]*self.world_size)
self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
for cb in range(self.args.n_codebooks):
self.meters[f'train_top10acc_cb{cb+1}'].update(average_top10acc_cbi[cb], batch['x'].shape[0]*self.world_size)
self.meters['data_time'].update(data_end_time - data_start_time)
self.meters['train_time'].update(time.time() - data_end_time)
# log extra losses
for key in sum_extra_losses:
if "train_"+key not in self.meters:
self.meters["train_"+key] = AverageMeter()
self.meters["train_"+key].update(sum(sum_extra_losses[key])/len(sum_extra_losses[key]), batch['x'].shape[0]*self.world_size)
if self.progress['step'] % self.args.tb_write_every_n_steps == 0:
self.writer.add_scalar('train/loss', average_loss, self.progress['step'])
self.writer.add_scalar('train/top10acc', average_top10acc, self.progress['step'])
self.writer.add_scalar("train/ntokens", sum_ntoken, self.progress['step'])
self.wandb.log({"train/loss": average_loss, "train/top10acc": average_top10acc, "train/ntokens": sum_ntoken, "train/data_time": data_end_time - data_start_time, "train/train_time": time.time() - data_end_time}, step=self.progress['step'])
for cb in range(self.args.n_codebooks):
self.writer.add_scalar(f'train/top10acc_cb{cb+1}', average_top10acc_cbi[cb], self.progress['step'])
self.wandb.log({f'train/top10acc_cb{cb+1}': average_top10acc_cbi[cb]}, step=self.progress['step'])
self.writer.add_scalar("train/data_time", data_end_time - data_start_time, self.progress['step'])
self.writer.add_scalar("train/train_time", time.time() - data_end_time, self.progress['step'])
# write extra losses
for key in sum_extra_losses:
self.writer.add_scalar(f"train/{key}", sum(sum_extra_losses[key])/len(sum_extra_losses[key]), self.progress['step'])
self.wandb.log({f"train/{key}": sum(sum_extra_losses[key])/len(sum_extra_losses[key])}, step=self.progress['step'])
# logging.info(f"ntoken: {sum_ntoken}")
# logging
if self.progress['step'] % self.args.print_every_n_steps == 0:
log_out = {}
log_out['cur_epoch'] = f"{self.progress['epoch']}/{self.args.num_epochs}" if self.args.num_epochs is not None else f"{self.progress['epoch']}"
log_out['cur_step'] = f"{int(self.progress['cur_step']+1)}"
log_out['total_step'] = f"{self.progress['step']}/{self.args.num_steps}"
log_out['lr'] = f"{cur_lr:.7f}"
log_out['ntokens'] = f"{sum_ntoken}"
for key in self.meters:
if self.meters[key].val != 0 or self.meters[key].avg != 0:
log_out[key] = f"{self.meters[key].val:.4f} ({self.meters[key].avg:.4f})" if isinstance(self.meters[key].val, float) else f"{self.meters[key].val}"
logging.info(log_out)
if np.isnan(self.meters['train_loss'].avg):
logging.warning("training diverged...")
raise RuntimeError("training diverged...")
# save the model only
if self.progress['step'] % self.args.save_every_n_steps == 0:
dist.barrier()
if self.rank == 0:
save_path = os.path.join(self.args.exp_dir,f"bundle_step{self.progress['step']}.pth")
self.save_progress(name=f"step{self.progress['step']}")
torch.save(
{
"model": self.model.module.state_dict(),
"args": self.args,
"phn2num": self.train_loader.dataset.phn2num,
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
},save_path
)
logging.info(f"save model, optimizer, scheduler and progress at {save_path} at global step {self.progress['step']}")
dist.barrier()
# validation and save models
if self.progress['step'] % self.args.val_every_n_steps == 0:
dist.barrier()
continue_training = self.validate_and_save()
# broadcast continue_training to all processes, so that all processes gets into generation stage
continue_training = torch.tensor(int(continue_training), dtype=torch.int, device=self.local_rank)
dist.broadcast(continue_training, src=0)
continue_training = bool(continue_training.item())
dist.barrier() # need this to ensure all processes get to the next line?
logging.info(f"rank: {self.rank}, continue_training: {continue_training}")
if not continue_training:
if self.rank == 0:
self.writer.close()
self.wandb.finish()
flag = False
break
self.progress['step'] += 1
self.progress['cur_step'] += 1
data_start_time = time.time()
self.progress['epoch'] += 1
self.progress['cur_step'] = 0 # reset cur_step to be 0
dist.destroy_process_group()
def validate_and_save(self):
self.model.eval()
score = self.validate(self.valid_loader)
if self.args.early_stop_threshold > 0:
if self.progress['best_score'] - score < self.args.early_stop_threshold:
self.early_stop_accu_steps += self.args.val_every_n_steps
if self.early_stop_accu_steps >= self.args.early_stop_step-1:
logging.info(f"early stop based on self.args.early_stop_threshold: {self.args.early_stop_threshold}, and self.args.early_stop_step: {self.args.early_stop_step}")
logging.info(f"best validation score at step: {self.progress['best_step']}, and the score is {self.progress['best_score']:.4f}")
return False
else:
self.early_stop_accu_steps = 0
if self.rank == 0:
save_path = os.path.join(self.args.exp_dir,"bundle.pth")
if os.path.isfile(save_path):
os.system(f"mv {save_path} {save_path.replace('.pth', '_prev.pth')}")
torch.save(
{
"model": self.model.module.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"args": self.args,
"phn2num": self.train_loader.dataset.phn2num
},save_path
)
self.save_progress()
logging.info(f"save models, indices, acc and other statistics at {save_path} and {self.args.exp_dir}/progress.pkl at global step {self.progress['step']}")
if (score < self.progress['best_score']):
self.progress['best_step'] = self.progress['step']
self.progress['best_score'] = score
save_path = os.path.join(self.args.exp_dir,"best_bundle.pth")
if os.path.isfile(save_path):
os.system(f"mv {save_path} {save_path.replace('.pth', '_prev.pth')}")
torch.save(
{
"model": self.model.module.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"args": self.args,
"phn2num": self.train_loader.dataset.phn2num
},save_path
)
logging.info(f"save *best* models at {save_path} at global step {self.progress['step']}")
# sync best score and best step, so that all processes early stop at the same time
best_score_tensor = torch.tensor(self.progress['best_score'], device=self.local_rank)
dist.broadcast(best_score_tensor, src=0)
self.progress['best_score'] = float(best_score_tensor.item())
best_step_tensor = torch.tensor(self.progress['best_step'], device=self.local_rank)
dist.broadcast(best_step_tensor, src=0)
self.progress['best_step'] = int(best_step_tensor.item())
dist.barrier()
return True
def validate(self, valid_loader=None, hide_progress=True):
if valid_loader == None:
valid_loader = self.valid_loader
self.model.eval()
start_val_time = time.time()
sum_losses = 0
sum_top10acc = 0
sum_ntoken = 0
sum_dur_loss = 0
sum_dur_acc = 0
sum_entropy_loss = 0
sum_ctc_loss = 0
sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]
mean_perplexity_cbi = [0 for _ in range(self.args.n_codebooks)]
with torch.no_grad():
for i, batch in enumerate(tqdm(valid_loader, disable=hide_progress)):
out = self.model(batch, calc_loss=True) # no reduction is applied to loss
sum_losses += out['loss']
sum_top10acc += out['top10acc']
sum_ntoken += out['effective_ntoken']
if "dur_loss" in out:
sum_dur_loss += out['dur_loss']
sum_dur_acc += out['dur_acc']
if "entropy_loss" in out:
sum_entropy_loss += out['entropy_loss']
if "ctc_loss" in out:
sum_ctc_loss += out['ctc_loss']
# logging.info(f"iter {i}::: {sum_losses}, {sum_top10acc}, {sum_ntoken}")
if 'top10acc_by_codebook' in out:
for cb in range(self.args.n_codebooks):
sum_top10acc_cbi[cb] += out['top10acc_by_codebook'][cb]
if 'perplexity_by_codebook' in out:
for cb in range(self.args.n_codebooks):
mean_perplexity_cbi[cb] += out['perplexity_by_codebook'][cb]
# if i > 10:
# break
dist.all_reduce(sum_losses, op=dist.ReduceOp.SUM)
dist.all_reduce(sum_top10acc, op=dist.ReduceOp.SUM)
dist.all_reduce(sum_ntoken, op=dist.ReduceOp.SUM)
if "dur_loss" in out:
dist.all_reduce(sum_dur_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(sum_dur_acc, op=dist.ReduceOp.SUM)
if "entropy_loss" in out:
dist.all_reduce(sum_entropy_loss, op=dist.ReduceOp.SUM)
if "ctc_loss" in out:
dist.all_reduce(sum_ctc_loss, op=dist.ReduceOp.SUM)
if 'top10acc_by_codebook' in out:
for cb in range(self.args.n_codebooks):
dist.all_reduce(sum_top10acc_cbi[cb], op=dist.ReduceOp.SUM)
if 'perplexity_by_codebook' in out:
for cb in range(self.args.n_codebooks):
dist.all_reduce(mean_perplexity_cbi[cb], op=dist.ReduceOp.SUM)
val_loss = sum_losses / sum_ntoken
val_top10acc = sum_top10acc / sum_ntoken
if self.rank == 0:
if "dur_loss" in out:
val_dur_loss = sum_dur_loss / sum_ntoken
val_dur_acc = sum_dur_acc / sum_ntoken
self.meters['val_dur_loss'].update(val_dur_loss)
logging.info(f"val dur_loss: {val_dur_loss:.5f}")
self.meters['val_dur_acc'].update(val_dur_acc)
logging.info(f"val dur_acc: {val_dur_acc:.5f}")
self.writer.add_scalar("val/dur_loss", val_dur_loss, self.progress['step'])
self.writer.add_scalar("val/dur_acc", val_dur_acc, self.progress['step'])
self.wandb.log({"val/dur_loss": val_dur_loss, "val/dur_acc": val_dur_acc}, step=self.progress['step'])
# logging
self.meters['val_loss'].update(val_loss)
logging.info(f"val loss: {val_loss:.5f}")
self.writer.add_scalar("val/loss", val_loss, self.progress['step'])
self.wandb.log({"val/loss": val_loss}, step=self.progress['step'])
self.meters['val_top10acc'].update(val_top10acc)
logging.info(f"val top10acc: {val_top10acc:.5f}")
self.writer.add_scalar("val/top10acc", val_top10acc, self.progress['step'])
self.wandb.log({"val/top10acc": val_top10acc}, step=self.progress['step'])
for cb in range(self.args.n_codebooks):
average_top10acc_cbi = sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks
self.meters[f'val_top10acc_cb{cb+1}'].update(average_top10acc_cbi)
self.writer.add_scalar(f'val/top10acc_cb{cb+1}', average_top10acc_cbi, self.progress['step'])
self.wandb.log({f'val/top10acc_cb{cb+1}': average_top10acc_cbi}, step=self.progress['step'])
temp = mean_perplexity_cbi[cb]/len(valid_loader)
self.writer.add_scalar(f'val/perplexity_cb{cb+1}', temp, self.progress['step'])
self.wandb.log({f'val/perplexity_cb{cb+1}': temp}, step=self.progress['step'])
average_perplexity = sum(mean_perplexity_cbi)/(self.args.n_codebooks*len(valid_loader))
self.wandb.log({"val/average_perplexity": average_perplexity}, step=self.progress['step'])
self.writer.add_scalar('val/average_perplexity', average_perplexity, self.progress['step'])
# log entropy and ctc loss
if "entropy_loss" in out:
val_entropy_loss = sum_entropy_loss / ((i+1) * self.world_size)
self.meters['val_entropy_loss'].update(val_entropy_loss)
logging.info(f"val entropy_loss: {val_entropy_loss:.5f}")
self.writer.add_scalar("val/entropy_loss", val_entropy_loss, self.progress['step'])
self.wandb.log({"val/entropy_loss": val_entropy_loss}, step=self.progress['step'])
if "ctc_loss" in out:
val_ctc_loss = sum_ctc_loss / ((i+1) * self.world_size)
self.meters['val_ctc_loss'].update(val_ctc_loss)
logging.info(f"val ctc_loss: {val_ctc_loss:.5f}")
self.writer.add_scalar("val/ctc_loss", val_ctc_loss, self.progress['step'])
self.wandb.log({"val/ctc_loss": val_ctc_loss}, step=self.progress['step'])
logging.info(f"validation takes: {time.time() - start_val_time:.2f}s")
logging.info(f"Step [{self.progress['step']}/{self.total_step}]\t Time elapsed {(time.time() - self.start_time)/3600.:.2f}h, Val Loss: {val_loss:.4f}, Val Top10Acc: {val_top10acc:.4f}")
return val_loss.item()
def _setup_meters(self):
meters = {}
meter_names = ['train_loss', 'val_loss', 'train_top10acc', 'val_top10acc', 'data_time', 'train_time']
meter_names += ['train_dur_loss', 'train_dur_acc', 'val_dur_loss', 'val_dur_acc']
meter_names += ['val_perplexity']
meter_names += [f'train_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
meter_names += [f'val_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
meter_names += [f'val_perplexity_cb{cb+1}' for cb in range(self.args.n_codebooks)]
for name in meter_names:
meters[name] = AverageMeter()
return meters
def _setup_progress(self):
"""
Need to customize it
"""
progress = {}
progress['best_step'] = 1
progress['best_score'] = np.inf # this records loss value
progress['step'] = 1
progress['epoch'] = 1
progress['cur_step'] = 0 # step in the current epoch, for resuming the sampler
total_progress = []
# if self.args.resume or self.args.validate:
if self.args.resume:
progress_pkl = "%s/progress.pkl" % self.args.exp_dir
with open(progress_pkl, "rb") as f:
total_progress = pickle.load(f)
progress['best_step'], progress['best_score'], progress['step'], progress['epoch'], progress['cur_step'], _ = total_progress[-1]
if self.rank == 0:
logging.info("\nResume training from:")
logging.info(" epoch = %s" % progress['epoch'])
logging.info(" cur_step = %s" % progress['cur_step'])
logging.info(" step = %s" % progress['step'])
logging.info(" best_step = %s" % progress['best_step'])
logging.info(" best_score = %s" % progress['best_score'])
return progress, total_progress
def save_progress(self, name=None):
self.total_progress.append([self.progress['best_step'], self.progress['best_score'], int(self.progress['step']+1), self.progress['epoch'], int(self.progress['cur_step']+1), time.time() - self.start_time])
if name is not None:
progress_fn = f"{self.args.exp_dir}/progress_{name}.pkl"
else:
progress_fn = f"{self.args.exp_dir}/progress.pkl"
with open(progress_fn, "wb") as f:
pickle.dump(self.total_progress, f)
def _setup_dataloader(self):
train_dataset, val_dataset = combined_dataset.dataset(self.args, 'train'), combined_dataset.dataset(self.args, 'valid') # need to change 'train' to 'valid' in actual training
if self.args.dynamic_batching:
train_sampler = DistributedDynamicBatchSampler(train_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=train_dataset.lengths_list, verbose=True, epoch=0)
valid_sampler = DistributedDynamicBatchSampler(val_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=val_dataset.lengths_list, verbose=True, epoch=0)
else:
train_sampler = StatefulDistributedSampler(train_dataset, self.args.batch_size//self.world_size, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True)
valid_sampler = DistributedSampler(val_dataset, num_replicas=self.world_size, rank=self.rank, shuffle=False, seed=self.args.seed, drop_last=False)
if self.progress['step'] > 1:
train_sampler.set_epoch_resume(self.progress['epoch'], self.progress['cur_step'])
assert self.phn2num != None
if self.phn2num != None:
train_dataset.phn2num = self.phn2num
val_dataset.phn2num = self.phn2num
if self.args.dynamic_batching:
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_sampler=train_sampler,
num_workers=self.args.num_workers,
collate_fn=train_dataset.collate, persistent_workers=True
)
valid_loader = torch.utils.data.DataLoader(val_dataset,
batch_sampler=valid_sampler,
num_workers=self.args.num_workers,
collate_fn=val_dataset.collate, persistent_workers=True
)
else:
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=self.args.batch_size, sampler=train_sampler, num_workers=self.args.num_workers,
collate_fn=train_dataset.collate, persistent_workers=True
)
valid_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=self.args.batch_size, sampler=valid_sampler,
num_workers=self.args.num_workers,
collate_fn=val_dataset.collate, persistent_workers=True
)
return len(train_dataset), train_sampler, train_loader, valid_loader
def _setup_models(self):
model = voice_star.VoiceStar(self.args)
if self.rank == 0:
logging.info(model)
logging.info("model parameters")
print_model_info(model)
phn2num = None
optim_states = None
scheduler_states = None
if self.progress['step'] > 1:
bundle = torch.load(os.path.join(self.args.exp_dir, "bundle.pth"), map_location="cpu")
model.load_state_dict(bundle['model'])
optim_states = bundle['optimizer']
scheduler_states = bundle['scheduler']
phn2num = bundle['phn2num']
if self.rank == 0:
logging.info("loaded parameters and data indices from epoch %d, global step %d" % (self.progress['epoch'], self.progress['step']))
del bundle['model']
if self.args.load_model_from != None and self.progress['step'] <= 1:
logging.info(f"load weights from {self.args.load_model_from}")
sd = torch.load(self.args.load_model_from, map_location="cpu")
if hasattr(model, "carefully_load_state_dict"):
model.carefully_load_state_dict(sd['model'])
else:
model.load_state_dict(sd['model'])
phn2num = sd['phn2num']
del sd
#### below operations is for getting params for optimizer, which is at wrapper level ###
if self.args.optimizer_name == "ScaledAdam":
trainables = [p for p in model.parameters() if p.requires_grad]
else:
no_decay = [".bias", ".audio_embeddings.weight", ".text_embeddings.weight", ".norm.weight", ".norm1.weight", ".norm2.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
},
]
if len(optimizer_grouped_parameters[1]['params']) == 0:
logging.info("there is no embedding weights, bias, and layernorm parameters in the model, which should be True, check model parameter names")
trainables = optimizer_grouped_parameters[0]
else:
trainables = optimizer_grouped_parameters
#### below operations is for getting params for optimizer, which is at wrapper level ###
model.to(self.device)
return model, trainables, optim_states, scheduler_states, phn2num
def _setup_optimizer(self):
if self.args.optimizer_name == "ScaledAdam":
parameters_names = []
_model = self.model.module if isinstance(self.model, torch.nn.parallel.DistributedDataParallel) else self.model
parameters_names.append([n for n,p in self.model.named_parameters() if p.requires_grad])
optimizer = ScaledAdam(
self.trainables,
lr=self.args.lr,
betas=(0.9, 0.95),
clipping_scale=2.0,
parameters_names=parameters_names,
show_dominant_parameters=False,
clipping_update_period=self.args.clipping_update_period,
)
scheduler = Eden(optimizer, self.args.reduce_lr_start_step, self.args.reduce_lr_start_epoch, warmup_batches=self.total_step * self.args.warmup_fraction) # NOTE: if using ScaledAdam, we will use the Eden scheduler!
else:
optimizer = AdamW(self.trainables, lr=self.args.lr)
warmup_steps = self.total_step * self.args.warmup_fraction
def lr_lambda(current_step: int):
if current_step < warmup_steps:
return float(current_step) / float(max(1, warmup_steps))
return max(
0.0, float(self.total_step - current_step) / float(max(1, self.total_step - warmup_steps))
)
scheduler = LambdaLR(optimizer, lr_lambda, last_epoch=-1)
# if resume
if self.progress['step'] > 1:
optimizer.load_state_dict(self.optim_states)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
del self.optim_states
scheduler.load_state_dict(self.scheduler_states)
optimizer.zero_grad()
return optimizer, scheduler
def seed_everything(self, seed=1):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True |