File size: 39,447 Bytes
82bc972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import time, sys, subprocess, json, re
from pathlib import Path
import os, random
import torch
import math, pickle
from tqdm import tqdm
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
import torch.nn as nn
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
import copy
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from torch.utils.data.distributed import DistributedSampler
import logging
# from data import librilight, gigaspeech, gigaspeech_waveform
from data import combined_dataset
from models import voice_star

from .trainer_utils import DistributedDynamicBatchSampler, StatefulDistributedSampler, StatefulSampler, AverageMeter, print_model_info
from .optim import ScaledAdam, Eden
import run_gen
import wandb, socket

class Trainer:
    
    def __init__(self, args, world_size, rank, local_rank):
        self.start_time = time.time()
        self.args = args
        if self.args.val_max_num_tokens == None:
            self.args.val_max_num_tokens = self.args.max_num_tokens 
        self.world_size, self.rank, self.local_rank = world_size, rank, local_rank
        self.device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu")
        if self.rank == 0:
            self.writer = SummaryWriter(args.exp_dir)
            self.wandb = wandb.init(project="voice_editor", name=args.exp_dir.split("/")[-1], config=args, dir=args.exp_dir, entity=self.args.wandb_entity)
        self.seed_everything(seed=self.args.seed)
        self.meters = self._setup_meters()

        self.progress, self.total_progress = self._setup_progress()

        self.model, self.trainables, self.optim_states, self.scheduler_states, self.phn2num = self._setup_models()

        self.train_dataset_length, self.train_sampler, self.train_loader, self.valid_loader = self._setup_dataloader() # both are use DistributedSampler, train sampler is stateful
        if self.args.num_steps != None:
            self.total_step = self.args.num_steps
            self.args.num_epochs = math.ceil(self.total_step / math.floor(self.train_dataset_length / self.args.batch_size)) if not self.args.dynamic_batching else None
        else:
            self.total_step = int(math.floor(self.train_dataset_length / self.args.batch_size))*self.args.num_epochs

        self.optimizer, self.scheduler = self._setup_optimizer()
        self.scaler = torch.cuda.amp.GradScaler()
        self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.local_rank], find_unused_parameters=False)
        self.early_stop_accu_steps = 0
        if self.rank == 0:
            if self.args.dynamic_batching:
                logging.info(f"max number of tokens per GPU in a training batch: {self.args.max_num_tokens}, max number of tokens per GPU in a inference batch: {self.args.val_max_num_tokens}")
            else:
                logging.info(f"batch size (per gpu): {self.args.batch_size}")
        
        self.args.inference_every_n_steps = getattr(self.args, "inference_every_n_steps", self.args.val_every_n_steps*5)
        assert self.args.inference_every_n_steps > self.args.val_every_n_steps and self.args.inference_every_n_steps % self.args.val_every_n_steps == 0, "inference_every_n_steps should be divisible by val_every_n_steps, otherwise the code will not get a chance to run inference"

    def train(self):
        flag = True
        skip_flag = False
        data_start_time = time.time()
        if self.progress['step'] >= self.total_step:
            if self.rank == 0:
                self.writer.close()
                self.wandb.finish()
            return
        while flag:
            self.train_sampler.set_epoch(self.progress['epoch'])
            for i, batch in enumerate(self.train_loader):
                if len(batch['y_lens']) < self.args.gradient_accumulation_steps:
                    continue
                data_end_time = time.time()
                self.model.train()
                if self.progress['step'] >= getattr(self.args, "uniform_weight_start_step", 1e50):
                    if self.progress['step'] == getattr(self.args, "uniform_weight_start_step", 1e50) and self.rank == 0:
                        logging.info("NOTE: start using uniform weight from step: {}".format(self.progress['step']))
                    self.args.codebook_weight = [2.5,2,1.5,0.6]
                    self.model.module.args.codebook_weight = [2.5,2,1.5,0.6]

                if self.progress['step'] >= self.total_step:
                    dist.barrier()
                    flag = False
                    self.validate_and_save()
                    if self.rank == 0:
                        self.writer.close()
                        self.wandb.finish()
                    break
                if isinstance(self.scheduler, Eden):
                    self.scheduler.step_epoch(self.progress['step']//self.args.pseudo_epoch_size + 1)
                if self.args.optimizer_name == "ScaledAdam":
                    cur_lr = self.scheduler.get_last_lr()[0]
                else:
                    lrs = [param_group['lr'] for param_group in self.optimizer.param_groups]
                    assert lrs[0] == lrs[1]
                    cur_lr = lrs[0]

                if self.rank == 0 and self.progress['step'] % self.args.tb_write_every_n_steps == 0:
                    self.writer.add_scalar("train/lr", cur_lr, self.progress['step'])
                    self.wandb.log({"train/lr": cur_lr}, step=self.progress['step'])

                all_inds = list(range(len(batch['y'])))
                sum_losses = 0
                sum_top10acc = 0
                sum_ntoken = 0
                sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]
                # extra losses
                sum_extra_losses = {}
                # when using prompt-based training, it's likely that due to prompt, the total length gets much longer, which make effective batch size in each accumulation step much bigger and then lead to OOM.
                # therefore we re-calculate graduent_accumulation_steps based on the effective batch size

                if self.args.neighbor_prompt_prob > 0:
                    effective_batch_size = self.args.max_num_tokens // self.args.gradient_accumulation_steps
                    total_batch_size = sum(batch['y_lens']).item()
                    cur_gradient_accumulation_steps = max(self.args.gradient_accumulation_steps, total_batch_size // effective_batch_size)
                    gas = torch.tensor(cur_gradient_accumulation_steps, dtype=torch.int, device=self.local_rank)
                    dist.all_reduce(gas, op=dist.ReduceOp.MAX)
                    cur_gradient_accumulation_steps = gas.item()
                    len_batch = torch.tensor(len(batch['y']), dtype=torch.int, device=self.local_rank)
                    dist.all_reduce(len_batch, op=dist.ReduceOp.MIN)
                    len_batch = len_batch.item()
                    cur_gradient_accumulation_steps = min(cur_gradient_accumulation_steps, len_batch)
                    # for those that cur_gradient_accumulation_steps * effective_batch_size < total_batch_size, we only use the first cur_gradient_accumulation_steps * effective_batch_size samples
                    cur_len = 0
                    final_all_inds = []
                    pointer = 0
                    while cur_len < self.args.max_num_tokens and pointer < len(all_inds):
                        cur_len += batch['y_lens'][pointer]
                        final_all_inds.append(all_inds[pointer])
                        pointer += 1
                    all_inds = final_all_inds
                else:
                    cur_gradient_accumulation_steps = self.args.gradient_accumulation_steps
                

                sum_losses_local = 0.0
                sum_top10acc_local = 0.0
                sum_entropy_loss_local = 0.0
                sum_ctc_loss_local = 0.0
                sum_ntoken_local = 0.0
                sum_top10acc_cbi_local = [0.0 for _ in range(self.args.n_codebooks)]

                global_nan_flag = 0
                for j in range(cur_gradient_accumulation_steps):
                    cur_ind = all_inds[j::cur_gradient_accumulation_steps]
                    cur_batch = {key: batch[key][cur_ind] for key in batch}

                    # Automatic casting
                    if self.args.precision == "float16":
                        precision_used = torch.float16
                    elif self.args.precision in ["bf16", "bfloat16"]:
                        precision_used = torch.bfloat16
                    else:
                        precision_used = torch.float32

                    with torch.amp.autocast('cuda', dtype=precision_used):
                        out = self.model(cur_batch, calc_loss=True)
                    if out is None:
                        continue

                    if torch.isnan(out['loss']).any():
                        local_nan_flag = torch.tensor(1, device=self.local_rank)
                    else:
                        local_nan_flag = torch.tensor(0, device=self.local_rank)

                    # All ranks check if *any* rank got a NaN
                    dist.all_reduce(local_nan_flag, op=dist.ReduceOp.SUM)
                    global_nan_flag = local_nan_flag.item()
                    if global_nan_flag > 0:
                        # Now *all* ranks break at the same j
                        logging.info(f"rank: {self.rank}. Loss at micro-batch {j} in step {self.progress['step']} was NaN on at least one rank; skipping.")
                        break

                    # Accumulate local values
                    record_loss = out['loss'].detach()
                    top10acc = out['top10acc'].detach()
                    effective_ntoken = out['effective_ntoken'].detach()

                    sum_losses_local += record_loss.item()
                    sum_top10acc_local += top10acc.item()
                    sum_ntoken_local += effective_ntoken.item()

                    # Optional losses
                    if 'entropy_loss' in out:
                        sum_entropy_loss_local += out['entropy_loss'].detach().item()
                    if 'ctc_loss' in out:
                        sum_ctc_loss_local += out['ctc_loss'].detach().item()

                    # Codebook accuracy
                    if 'top10acc_by_codebook' in out:
                        for cb in range(self.args.n_codebooks):
                            sum_top10acc_cbi_local[cb] += out['top10acc_by_codebook'][cb].detach().item()

                    # Backprop on this micro-batch
                    if self.args.optimizer_name == "ScaledAdam":
                        self.scaler.scale(out['loss']).backward()
                    else:
                        self.scaler.scale(out['loss'] / out['effective_ntoken']).backward()

                if global_nan_flag > 0:
                    # If *any* rank had NaN, skip this step
                    logging.info(f"rank: {self.rank}. Loss at one micro-batch in step {self.progress['step']} was NaN on at least one rank; skipping.")
                    self.progress['step'] += 1
                    self.progress['cur_step'] += 1
                    self.optimizer.zero_grad()
                    continue

                # Otherwise, do one big reduce for the summed metrics
                metrics_tensor = torch.tensor([
                    sum_losses_local,
                    sum_top10acc_local,
                    sum_entropy_loss_local,
                    sum_ctc_loss_local,
                    sum_ntoken_local
                ], device=self.local_rank, dtype=torch.float32)

                dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)

                # Also reduce the codebook array in one shot if needed
                codebook_tensor = torch.tensor(sum_top10acc_cbi_local, device=self.local_rank, dtype=torch.float32)
                dist.all_reduce(codebook_tensor, op=dist.ReduceOp.SUM)

                # Convert them back to Python scalars
                sum_losses = metrics_tensor[0].item()
                sum_top10acc = metrics_tensor[1].item()
                sum_entropy_loss = metrics_tensor[2].item()
                sum_ctc_loss = metrics_tensor[3].item()
                sum_ntoken = metrics_tensor[4].item()

                sum_top10acc_cbi = codebook_tensor.tolist()

                if self.args.optimizer_name != "ScaledAdam":
                    self.scaler.unscale_(self.optimizer)
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.gradient_clip_val)

                self.scaler.step(self.optimizer)
                self.scaler.update()
                self.optimizer.zero_grad()

                if self.args.optimizer_name == "ScaledAdam":
                    self.scheduler.step_batch(self.progress['step'])
                else:
                    self.scheduler.step()
                
                # logging
                if self.rank == 0:
                    average_loss = sum_losses / sum_ntoken
                    average_top10acc = sum_top10acc / sum_ntoken
                    average_top10acc_cbi = [sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks for cb in range(self.args.n_codebooks)]
                    self.meters['train_loss'].update(average_loss, batch['x'].shape[0]*self.world_size)
                    self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
                    self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
                    for cb in range(self.args.n_codebooks):
                        self.meters[f'train_top10acc_cb{cb+1}'].update(average_top10acc_cbi[cb], batch['x'].shape[0]*self.world_size)
                    self.meters['data_time'].update(data_end_time - data_start_time)
                    self.meters['train_time'].update(time.time() - data_end_time)

                    # log extra losses
                    for key in sum_extra_losses:
                        if "train_"+key not in self.meters:
                            self.meters["train_"+key] = AverageMeter()
                        self.meters["train_"+key].update(sum(sum_extra_losses[key])/len(sum_extra_losses[key]), batch['x'].shape[0]*self.world_size)

                    if self.progress['step'] % self.args.tb_write_every_n_steps == 0:
                        self.writer.add_scalar('train/loss', average_loss, self.progress['step'])
                        self.writer.add_scalar('train/top10acc', average_top10acc, self.progress['step'])
                        self.writer.add_scalar("train/ntokens", sum_ntoken, self.progress['step'])
                        self.wandb.log({"train/loss": average_loss, "train/top10acc": average_top10acc, "train/ntokens": sum_ntoken, "train/data_time": data_end_time - data_start_time, "train/train_time": time.time() - data_end_time}, step=self.progress['step'])

                        for cb in range(self.args.n_codebooks):
                            self.writer.add_scalar(f'train/top10acc_cb{cb+1}', average_top10acc_cbi[cb], self.progress['step'])
                            self.wandb.log({f'train/top10acc_cb{cb+1}': average_top10acc_cbi[cb]}, step=self.progress['step'])
                        self.writer.add_scalar("train/data_time", data_end_time - data_start_time, self.progress['step'])
                        self.writer.add_scalar("train/train_time", time.time() - data_end_time, self.progress['step'])
                        # write extra losses
                        for key in sum_extra_losses:
                            self.writer.add_scalar(f"train/{key}", sum(sum_extra_losses[key])/len(sum_extra_losses[key]), self.progress['step'])
                            self.wandb.log({f"train/{key}": sum(sum_extra_losses[key])/len(sum_extra_losses[key])}, step=self.progress['step'])
                    # logging.info(f"ntoken: {sum_ntoken}")
                        
                    # logging
                    if self.progress['step'] % self.args.print_every_n_steps == 0:
                        log_out = {}
                        log_out['cur_epoch'] = f"{self.progress['epoch']}/{self.args.num_epochs}" if self.args.num_epochs is not None else f"{self.progress['epoch']}"
                        log_out['cur_step'] = f"{int(self.progress['cur_step']+1)}"
                        log_out['total_step'] = f"{self.progress['step']}/{self.args.num_steps}"
                        log_out['lr'] = f"{cur_lr:.7f}"
                        log_out['ntokens'] = f"{sum_ntoken}"
                        for key in self.meters:
                            if self.meters[key].val != 0 or self.meters[key].avg != 0:
                                log_out[key] = f"{self.meters[key].val:.4f} ({self.meters[key].avg:.4f})" if isinstance(self.meters[key].val, float) else f"{self.meters[key].val}"
                        logging.info(log_out)
                        if np.isnan(self.meters['train_loss'].avg):
                            logging.warning("training diverged...")
                            raise RuntimeError("training diverged...")

                # save the model only
                if self.progress['step'] % self.args.save_every_n_steps == 0:
                    dist.barrier()
                    if self.rank == 0:
                        save_path = os.path.join(self.args.exp_dir,f"bundle_step{self.progress['step']}.pth")
                        self.save_progress(name=f"step{self.progress['step']}")
                        torch.save(
                            {
                                "model": self.model.module.state_dict(),
                                "args": self.args,
                                "phn2num": self.train_loader.dataset.phn2num,
                                "optimizer":  self.optimizer.state_dict(),
                                "scheduler": self.scheduler.state_dict(),
                            },save_path
                        )
                        logging.info(f"save model, optimizer, scheduler and progress at {save_path} at global step {self.progress['step']}")
                    dist.barrier()
                
                # validation and save models
                if self.progress['step'] % self.args.val_every_n_steps == 0:
                    dist.barrier()
                    continue_training = self.validate_and_save()
                    # broadcast continue_training to all processes, so that all processes gets into generation stage
                    continue_training = torch.tensor(int(continue_training), dtype=torch.int, device=self.local_rank)
                    dist.broadcast(continue_training, src=0)
                    continue_training = bool(continue_training.item())
                    dist.barrier() # need this to ensure all processes get to the next line?
                    logging.info(f"rank: {self.rank}, continue_training: {continue_training}")
                    if not continue_training: 
                        if self.rank == 0:
                            self.writer.close()
                            self.wandb.finish()
                        flag = False
                        break

                self.progress['step'] += 1
                self.progress['cur_step'] += 1

                data_start_time = time.time()
            self.progress['epoch'] += 1
            self.progress['cur_step'] = 0 # reset cur_step to be 0
        dist.destroy_process_group()

    def validate_and_save(self):
        self.model.eval()
        
        score = self.validate(self.valid_loader)

        if self.args.early_stop_threshold > 0:
            if self.progress['best_score'] - score < self.args.early_stop_threshold:
                self.early_stop_accu_steps += self.args.val_every_n_steps
                if self.early_stop_accu_steps >= self.args.early_stop_step-1:
                    logging.info(f"early stop based on self.args.early_stop_threshold: {self.args.early_stop_threshold}, and self.args.early_stop_step: {self.args.early_stop_step}")
                    logging.info(f"best validation score at step: {self.progress['best_step']}, and the score is {self.progress['best_score']:.4f}")
                    return False
            else:
                self.early_stop_accu_steps = 0

        if self.rank == 0:
            save_path = os.path.join(self.args.exp_dir,"bundle.pth")
            if os.path.isfile(save_path):
                os.system(f"mv {save_path} {save_path.replace('.pth', '_prev.pth')}")
            torch.save(
                {
                    "model": self.model.module.state_dict(),
                    "optimizer":  self.optimizer.state_dict(),
                    "scheduler": self.scheduler.state_dict(),
                    "args": self.args,
                    "phn2num": self.train_loader.dataset.phn2num
                    },save_path
            )
            self.save_progress()
            logging.info(f"save models, indices, acc and other statistics at {save_path} and {self.args.exp_dir}/progress.pkl at global step {self.progress['step']}")
            if (score < self.progress['best_score']):
                self.progress['best_step'] = self.progress['step']
                self.progress['best_score'] = score
                save_path = os.path.join(self.args.exp_dir,"best_bundle.pth")
                if os.path.isfile(save_path):
                    os.system(f"mv {save_path} {save_path.replace('.pth', '_prev.pth')}")
                torch.save(
                    {
                        "model": self.model.module.state_dict(),
                        "optimizer":  self.optimizer.state_dict(),
                        "scheduler": self.scheduler.state_dict(),
                        "args": self.args,
                        "phn2num": self.train_loader.dataset.phn2num
                    },save_path
                )
                logging.info(f"save *best* models at {save_path} at global step {self.progress['step']}")
        
        # sync best score and best step, so that all processes early stop at the same time
        best_score_tensor = torch.tensor(self.progress['best_score'], device=self.local_rank)
        dist.broadcast(best_score_tensor, src=0)
        self.progress['best_score'] = float(best_score_tensor.item())
        best_step_tensor = torch.tensor(self.progress['best_step'], device=self.local_rank)
        dist.broadcast(best_step_tensor, src=0)
        self.progress['best_step'] = int(best_step_tensor.item())
        dist.barrier()
        return True

    def validate(self, valid_loader=None, hide_progress=True):
        if valid_loader == None:
            valid_loader = self.valid_loader
        self.model.eval()

        start_val_time = time.time()
        sum_losses = 0
        sum_top10acc = 0
        sum_ntoken = 0
        sum_dur_loss = 0
        sum_dur_acc = 0
        sum_entropy_loss = 0
        sum_ctc_loss = 0

        sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]
        mean_perplexity_cbi = [0 for _ in range(self.args.n_codebooks)]

        with torch.no_grad():
            for i, batch in enumerate(tqdm(valid_loader, disable=hide_progress)):
                out = self.model(batch, calc_loss=True) # no reduction is applied to loss
                sum_losses += out['loss']
                sum_top10acc += out['top10acc']
                sum_ntoken += out['effective_ntoken']
                if "dur_loss" in out:
                    sum_dur_loss += out['dur_loss']
                    sum_dur_acc += out['dur_acc']
                if "entropy_loss" in out:
                    sum_entropy_loss += out['entropy_loss']
                if "ctc_loss" in out:
                    sum_ctc_loss += out['ctc_loss']
                # logging.info(f"iter {i}::: {sum_losses}, {sum_top10acc}, {sum_ntoken}")
                if 'top10acc_by_codebook' in out:
                    for cb in range(self.args.n_codebooks):
                        sum_top10acc_cbi[cb] += out['top10acc_by_codebook'][cb]
                        
                if 'perplexity_by_codebook' in out:
                    for cb in range(self.args.n_codebooks):
                        mean_perplexity_cbi[cb] += out['perplexity_by_codebook'][cb]
                # if i > 10:
                #     break

        
        dist.all_reduce(sum_losses, op=dist.ReduceOp.SUM)
        dist.all_reduce(sum_top10acc, op=dist.ReduceOp.SUM)
        dist.all_reduce(sum_ntoken, op=dist.ReduceOp.SUM)
        if "dur_loss" in out:
            dist.all_reduce(sum_dur_loss, op=dist.ReduceOp.SUM)
            dist.all_reduce(sum_dur_acc, op=dist.ReduceOp.SUM)
        if "entropy_loss" in out:
            dist.all_reduce(sum_entropy_loss, op=dist.ReduceOp.SUM)
        if "ctc_loss" in out:
            dist.all_reduce(sum_ctc_loss, op=dist.ReduceOp.SUM)

        if 'top10acc_by_codebook' in out:
            for cb in range(self.args.n_codebooks):
                dist.all_reduce(sum_top10acc_cbi[cb], op=dist.ReduceOp.SUM)
        
        if 'perplexity_by_codebook' in out:
            for cb in range(self.args.n_codebooks):
                dist.all_reduce(mean_perplexity_cbi[cb], op=dist.ReduceOp.SUM)
        
        val_loss = sum_losses / sum_ntoken
        val_top10acc = sum_top10acc / sum_ntoken
        
        if self.rank == 0:
            if "dur_loss" in out:
                val_dur_loss = sum_dur_loss / sum_ntoken
                val_dur_acc = sum_dur_acc / sum_ntoken
                self.meters['val_dur_loss'].update(val_dur_loss)
                logging.info(f"val dur_loss: {val_dur_loss:.5f}")
                self.meters['val_dur_acc'].update(val_dur_acc)
                logging.info(f"val dur_acc: {val_dur_acc:.5f}")
                self.writer.add_scalar("val/dur_loss", val_dur_loss, self.progress['step'])
                self.writer.add_scalar("val/dur_acc", val_dur_acc, self.progress['step'])
                self.wandb.log({"val/dur_loss": val_dur_loss, "val/dur_acc": val_dur_acc}, step=self.progress['step'])
            # logging
            self.meters['val_loss'].update(val_loss)
            logging.info(f"val loss: {val_loss:.5f}")
            self.writer.add_scalar("val/loss", val_loss, self.progress['step'])
            self.wandb.log({"val/loss": val_loss}, step=self.progress['step'])

            self.meters['val_top10acc'].update(val_top10acc)
            logging.info(f"val top10acc: {val_top10acc:.5f}")
            self.writer.add_scalar("val/top10acc", val_top10acc, self.progress['step'])
            self.wandb.log({"val/top10acc": val_top10acc}, step=self.progress['step'])
            for cb in range(self.args.n_codebooks):
                average_top10acc_cbi = sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks
                self.meters[f'val_top10acc_cb{cb+1}'].update(average_top10acc_cbi)
                self.writer.add_scalar(f'val/top10acc_cb{cb+1}', average_top10acc_cbi, self.progress['step'])
                self.wandb.log({f'val/top10acc_cb{cb+1}': average_top10acc_cbi}, step=self.progress['step'])

                temp = mean_perplexity_cbi[cb]/len(valid_loader)
                self.writer.add_scalar(f'val/perplexity_cb{cb+1}', temp, self.progress['step'])
                self.wandb.log({f'val/perplexity_cb{cb+1}': temp}, step=self.progress['step'])
                
            average_perplexity = sum(mean_perplexity_cbi)/(self.args.n_codebooks*len(valid_loader))
            self.wandb.log({"val/average_perplexity": average_perplexity}, step=self.progress['step'])
            self.writer.add_scalar('val/average_perplexity', average_perplexity, self.progress['step'])
            
            # log entropy and ctc loss
            if "entropy_loss" in out:
                val_entropy_loss = sum_entropy_loss / ((i+1) * self.world_size)
                self.meters['val_entropy_loss'].update(val_entropy_loss)
                logging.info(f"val entropy_loss: {val_entropy_loss:.5f}")
                self.writer.add_scalar("val/entropy_loss", val_entropy_loss, self.progress['step'])
                self.wandb.log({"val/entropy_loss": val_entropy_loss}, step=self.progress['step'])
            if "ctc_loss" in out:
                val_ctc_loss = sum_ctc_loss / ((i+1) * self.world_size)
                self.meters['val_ctc_loss'].update(val_ctc_loss)
                logging.info(f"val ctc_loss: {val_ctc_loss:.5f}")
                self.writer.add_scalar("val/ctc_loss", val_ctc_loss, self.progress['step'])
                self.wandb.log({"val/ctc_loss": val_ctc_loss}, step=self.progress['step'])

            logging.info(f"validation takes: {time.time() - start_val_time:.2f}s")
            logging.info(f"Step [{self.progress['step']}/{self.total_step}]\t Time elapsed {(time.time() - self.start_time)/3600.:.2f}h, Val Loss: {val_loss:.4f}, Val Top10Acc: {val_top10acc:.4f}")

        return val_loss.item()

    def _setup_meters(self):
        meters = {}
        meter_names = ['train_loss', 'val_loss', 'train_top10acc', 'val_top10acc', 'data_time', 'train_time']
        meter_names += ['train_dur_loss', 'train_dur_acc', 'val_dur_loss', 'val_dur_acc']
        meter_names += ['val_perplexity']
        meter_names += [f'train_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
        meter_names += [f'val_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
        meter_names += [f'val_perplexity_cb{cb+1}' for cb in range(self.args.n_codebooks)]
        for name in meter_names:
            meters[name] = AverageMeter()
        return meters
    def _setup_progress(self):
        """
        Need to customize it
        """
        progress = {}
        progress['best_step'] = 1
        progress['best_score'] = np.inf # this records loss value
        progress['step'] = 1
        progress['epoch'] = 1
        progress['cur_step'] = 0 # step in the current epoch, for resuming the sampler
        total_progress = []
        # if self.args.resume or self.args.validate:
        if self.args.resume:
            progress_pkl = "%s/progress.pkl" % self.args.exp_dir
            with open(progress_pkl, "rb") as f:
                total_progress = pickle.load(f)
                progress['best_step'], progress['best_score'], progress['step'], progress['epoch'], progress['cur_step'], _ = total_progress[-1]
            if self.rank == 0:
                logging.info("\nResume training from:")
                logging.info("  epoch = %s" % progress['epoch'])
                logging.info("  cur_step = %s" % progress['cur_step'])
                logging.info("  step = %s" % progress['step'])
                logging.info("  best_step = %s" % progress['best_step'])
                logging.info("  best_score = %s" % progress['best_score'])
        return progress, total_progress
    
    def save_progress(self, name=None):
        self.total_progress.append([self.progress['best_step'], self.progress['best_score'], int(self.progress['step']+1), self.progress['epoch'], int(self.progress['cur_step']+1), time.time() - self.start_time])
        if name is not None:
            progress_fn = f"{self.args.exp_dir}/progress_{name}.pkl"
        else:
            progress_fn = f"{self.args.exp_dir}/progress.pkl"
        with open(progress_fn, "wb") as f:
            pickle.dump(self.total_progress, f)

    def _setup_dataloader(self):
        train_dataset, val_dataset = combined_dataset.dataset(self.args, 'train'), combined_dataset.dataset(self.args, 'valid') # need to change 'train' to 'valid' in actual training

        if self.args.dynamic_batching:
            train_sampler = DistributedDynamicBatchSampler(train_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=train_dataset.lengths_list, verbose=True, epoch=0)
            valid_sampler = DistributedDynamicBatchSampler(val_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=val_dataset.lengths_list, verbose=True, epoch=0)
        else:
            train_sampler = StatefulDistributedSampler(train_dataset, self.args.batch_size//self.world_size, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True)
            valid_sampler = DistributedSampler(val_dataset, num_replicas=self.world_size, rank=self.rank, shuffle=False, seed=self.args.seed, drop_last=False)
            
        if self.progress['step'] > 1:
            train_sampler.set_epoch_resume(self.progress['epoch'], self.progress['cur_step'])
            assert self.phn2num != None

        if self.phn2num != None:
            train_dataset.phn2num = self.phn2num
            val_dataset.phn2num = self.phn2num

        if self.args.dynamic_batching:
            train_loader = torch.utils.data.DataLoader(train_dataset, 
                            batch_sampler=train_sampler, 
                            num_workers=self.args.num_workers,
                            collate_fn=train_dataset.collate, persistent_workers=True
                            )
            valid_loader = torch.utils.data.DataLoader(val_dataset, 
                            batch_sampler=valid_sampler, 
                            num_workers=self.args.num_workers,
                            collate_fn=val_dataset.collate, persistent_workers=True
                            )
        else:
            train_loader = torch.utils.data.DataLoader(train_dataset, 
                            batch_size=self.args.batch_size, sampler=train_sampler, num_workers=self.args.num_workers,
                            collate_fn=train_dataset.collate, persistent_workers=True
                            )
            valid_loader = torch.utils.data.DataLoader(val_dataset, 
                            batch_size=self.args.batch_size, sampler=valid_sampler,
                            num_workers=self.args.num_workers,
                            collate_fn=val_dataset.collate, persistent_workers=True
                            )
        return len(train_dataset), train_sampler, train_loader, valid_loader
        

        
    def _setup_models(self):
        model = voice_star.VoiceStar(self.args)

        if self.rank == 0:
            logging.info(model)
            logging.info("model parameters")
            print_model_info(model)
        
        phn2num = None
        optim_states = None
        scheduler_states = None
        if self.progress['step'] > 1:
            bundle = torch.load(os.path.join(self.args.exp_dir, "bundle.pth"), map_location="cpu")
            model.load_state_dict(bundle['model'])
            optim_states = bundle['optimizer']
            scheduler_states = bundle['scheduler']
            phn2num = bundle['phn2num']
            if self.rank == 0:
                logging.info("loaded parameters and data indices from epoch %d, global step %d" % (self.progress['epoch'], self.progress['step']))
            del bundle['model']

        if self.args.load_model_from != None and self.progress['step'] <= 1:
            logging.info(f"load weights from {self.args.load_model_from}")
            sd = torch.load(self.args.load_model_from, map_location="cpu")
            if hasattr(model, "carefully_load_state_dict"):
                model.carefully_load_state_dict(sd['model'])
            else:
                model.load_state_dict(sd['model'])
            phn2num = sd['phn2num']
            del sd
        

        #### below operations is for getting params for optimizer, which is at wrapper level ###
        if self.args.optimizer_name == "ScaledAdam":
            trainables = [p for p in model.parameters() if p.requires_grad]
        else:
            no_decay = [".bias", ".audio_embeddings.weight", ".text_embeddings.weight", ".norm.weight", ".norm1.weight", ".norm2.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
                    "weight_decay": 0.0,
                },
            ]
            if len(optimizer_grouped_parameters[1]['params']) == 0:
                logging.info("there is no embedding weights, bias, and layernorm parameters in the model, which should be True, check model parameter names")
                trainables = optimizer_grouped_parameters[0]
            else:
                trainables = optimizer_grouped_parameters
        #### below operations is for getting params for optimizer, which is at wrapper level ###
        model.to(self.device)

        return model, trainables, optim_states, scheduler_states, phn2num

    
    def _setup_optimizer(self):
        if self.args.optimizer_name == "ScaledAdam":
            parameters_names = []
            _model = self.model.module if isinstance(self.model, torch.nn.parallel.DistributedDataParallel) else self.model
            parameters_names.append([n for n,p in self.model.named_parameters() if p.requires_grad])
            optimizer = ScaledAdam(
                self.trainables,
                lr=self.args.lr,
                betas=(0.9, 0.95),
                clipping_scale=2.0,
                parameters_names=parameters_names,
                show_dominant_parameters=False,
                clipping_update_period=self.args.clipping_update_period,
            )
            scheduler = Eden(optimizer, self.args.reduce_lr_start_step, self.args.reduce_lr_start_epoch, warmup_batches=self.total_step * self.args.warmup_fraction) # NOTE: if using ScaledAdam, we will use the Eden scheduler!

        else:
            optimizer = AdamW(self.trainables, lr=self.args.lr)
            warmup_steps = self.total_step * self.args.warmup_fraction
            def lr_lambda(current_step: int):
                if current_step < warmup_steps:
                    return float(current_step) / float(max(1, warmup_steps))
                return max(
                    0.0, float(self.total_step - current_step) / float(max(1, self.total_step - warmup_steps))
                )

            scheduler = LambdaLR(optimizer, lr_lambda, last_epoch=-1)
            
        # if resume
        if self.progress['step'] > 1:
            optimizer.load_state_dict(self.optim_states)
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.cuda()
            del self.optim_states

            scheduler.load_state_dict(self.scheduler_states)

        optimizer.zero_grad()
        return optimizer, scheduler
    
    def seed_everything(self, seed=1):
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True