Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,870 Bytes
82bc972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
# Copyright 2023 (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import logging
import torch
import torch.nn as nn
class TokenEmbedding(nn.Module):
def __init__(
self,
dim_model: int,
vocab_size: int,
dropout: float = 0.0,
):
super().__init__()
self.vocab_size = vocab_size
self.dim_model = dim_model
self.dropout = torch.nn.Dropout(p=dropout)
self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model)
@property
def weight(self) -> torch.Tensor:
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index : index + 1]
def forward(self, x: torch.Tensor):
X = self.word_embeddings(x)
X = self.dropout(X)
return X
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
dim_model: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.dim_model = dim_model
self.x_scale = math.sqrt(dim_model) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.dim_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(
0, x.size(1), dtype=torch.float32
).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.dim_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.dim_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor, *args) -> torch.Tensor:
self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(output)
class SinePositionalEmbedding_progress(nn.Module):
def __init__(
self,
dim_model: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
args = None
):
super().__init__()
self.args = args
self.dim_model = dim_model
self.x_scale = math.sqrt(dim_model) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.div_term = torch.exp(
torch.arange(0, self.dim_model, 2, dtype=torch.float32)
* -(math.log(args.sinusoidal_base) / self.dim_model)
).unsqueeze(0).unsqueeze(0) # [1, 1, dim_model//2]
self.position = None
self.extend_position(torch.tensor(0.0).expand(1, 10000))
self.progress_scale = getattr(args, "progress_scale", 1.0)
def extend_position(self, x):
"""Reset the positional encodings."""
if self.position is not None:
if self.div_term.dtype != x.dtype or self.div_term.device != x.device:
self.div_term = self.div_term.to(dtype=x.dtype, device=x.device)
if self.position.size(1) >= x.size(1):
if self.position.dtype != x.dtype or self.position.device != x.device:
self.position = self.position.to(dtype=x.dtype, device=x.device)
return
if self.reverse:
self.position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(0).unsqueeze(2).to(x)
else:
self.position = torch.arange(
0, x.size(1), dtype=torch.float32
).unsqueeze(0).unsqueeze(2).to(x) # [1, seq_len, 1]
def forward(self, x: torch.Tensor, x_lens: torch.Tensor) -> torch.Tensor:
assert x.ndim == 3, x.shape
self.extend_position(x)
x_lens = x_lens.unsqueeze(1).unsqueeze(2) # [B, 1, 1]
multiple = x_lens / (x_lens - 1)
progress = self.position[:, :x.shape[1]] * multiple / x_lens * self.progress_scale
# torch.set_printoptions(edgeitems=100)
# for i in range(x_lens.shape[0]):
# logging.info(f"{progress[i, :x_lens[i,0,0], 0]}")
invfreq = self.div_term * progress # might want to use a scale term here
pe = torch.zeros_like(x)
pe[..., 0::2] = torch.sin(invfreq)
pe[..., 1::2] = torch.cos(invfreq)
output = x * self.x_scale + self.alpha * pe
return self.dropout(output) |