File size: 10,289 Bytes
72b86d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# EXAMPLE COMMAND: python examples/open_deep_research/run_gaia.py --concurrency 32 --run-name generate-traces-03-apr-noplanning --model-id gpt-4o
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
CodeAgent,
GoogleSearchTool,
LiteLLMModel,
Model,
ToolCallingAgent,
)
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--concurrency", type=int, default=8)
parser.add_argument("--model-id", type=str, default="o1")
parser.add_argument("--run-name", type=str, required=True)
return parser.parse_args()
### IMPORTANT: EVALUATION SWITCHES
print("Make sure you deactivated Tailscale VPN, else some URLs will be blocked!")
USE_OPEN_MODELS = False
SET = "validation"
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
### LOAD EVALUATION DATASET
eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET]
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"})
def preprocess_file_paths(row):
if len(row["file_name"]) > 0:
row["file_name"] = f"data/gaia/{SET}/" + row["file_name"]
return row
eval_ds = eval_ds.map(preprocess_file_paths)
eval_df = pd.DataFrame(eval_ds)
print("Loaded evaluation dataset:")
print(eval_df["task"].value_counts())
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
def create_agent_team(model: Model):
text_limit = 100000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(provider="serper"),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
text_webbrowser_agent = ToolCallingAgent(
model=model,
tools=WEB_TOOLS,
max_steps=20,
verbosity_level=2,
planning_interval=4,
name="search_agent",
description="""A team member that will search the internet to answer your question.
Ask him for all your questions that require browsing the web.
Provide him as much context as possible, in particular if you need to search on a specific timeframe!
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
""",
provide_run_summary=True,
)
text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files.
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information."""
manager_agent = CodeAgent(
model=model,
tools=[visualizer, ti_tool],
max_steps=12,
verbosity_level=2,
additional_authorized_imports=["*"],
planning_interval=4,
managed_agents=[text_webbrowser_agent],
)
return manager_agent
def append_answer(entry: dict, jsonl_file: str) -> None:
jsonl_file = Path(jsonl_file)
jsonl_file.parent.mkdir(parents=True, exist_ok=True)
with append_answer_lock, open(jsonl_file, "a", encoding="utf-8") as fp:
fp.write(json.dumps(entry) + "\n")
assert os.path.exists(jsonl_file), "File not found!"
print("Answer exported to file:", jsonl_file.resolve())
def answer_single_question(example, model_id, answers_file, visual_inspection_tool):
model_params = {
"model_id": model_id,
"custom_role_conversions": custom_role_conversions,
}
if model_id == "o1":
model_params["reasoning_effort"] = "high"
model_params["max_completion_tokens"] = 8192
else:
model_params["max_tokens"] = 4096
model = LiteLLMModel(**model_params)
# model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=4096)
document_inspection_tool = TextInspectorTool(model, 100000)
agent = create_agent_team(model)
augmented_question = """You have one question to answer. It is paramount that you provide a correct answer.
Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
Run verification steps if that's needed, you must make sure you find the correct answer!
Here is the task:
""" + example["question"]
if example["file_name"]:
if ".zip" in example["file_name"]:
prompt_use_files = "\n\nTo solve the task above, you will have to use these attached files:\n"
prompt_use_files += get_zip_description(
example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool
)
else:
prompt_use_files = "\n\nTo solve the task above, you will have to use this attached file:"
prompt_use_files += get_single_file_description(
example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool
)
augmented_question += prompt_use_files
start_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
try:
# Run agent 🚀
final_result = agent.run(augmented_question)
agent_memory = agent.write_memory_to_messages()
final_result = prepare_response(augmented_question, agent_memory, reformulation_model=model)
output = str(final_result)
for memory_step in agent.memory.steps:
memory_step.model_input_messages = None
intermediate_steps = agent_memory
# Check for parsing errors which indicate the LLM failed to follow the required format
parsing_error = True if any(["AgentParsingError" in step for step in intermediate_steps]) else False
# check if iteration limit exceeded
iteration_limit_exceeded = True if "Agent stopped due to iteration limit or time limit." in output else False
raised_exception = False
except Exception as e:
print("Error on ", augmented_question, e)
output = None
intermediate_steps = []
parsing_error = False
iteration_limit_exceeded = False
exception = e
raised_exception = True
end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
token_counts_manager = agent.monitor.get_total_token_counts()
token_counts_web = list(agent.managed_agents.values())[0].monitor.get_total_token_counts()
total_token_counts = {
"input": token_counts_manager["input"] + token_counts_web["input"],
"output": token_counts_manager["output"] + token_counts_web["output"],
}
annotated_example = {
"agent_name": model.model_id,
"question": example["question"],
"augmented_question": augmented_question,
"prediction": output,
"intermediate_steps": intermediate_steps,
"parsing_error": parsing_error,
"iteration_limit_exceeded": iteration_limit_exceeded,
"agent_error": str(exception) if raised_exception else None,
"task": example["task"],
"task_id": example["task_id"],
"true_answer": example["true_answer"],
"start_time": start_time,
"end_time": end_time,
"token_counts": total_token_counts,
}
append_answer(annotated_example, answers_file)
def get_examples_to_answer(answers_file, eval_ds) -> list[dict]:
print(f"Loading answers from {answers_file}...")
try:
done_questions = pd.read_json(answers_file, lines=True)["question"].tolist()
print(f"Found {len(done_questions)} previous results!")
except Exception as e:
print("Error when loading records: ", e)
print("No usable records! ▶️ Starting new.")
done_questions = []
return [line for line in eval_ds.to_list() if line["question"] not in done_questions]
def main():
args = parse_args()
print(f"Starting run with arguments: {args}")
answers_file = f"output/{SET}/{args.run_name}.jsonl"
tasks_to_run = get_examples_to_answer(answers_file, eval_ds)
with ThreadPoolExecutor(max_workers=args.concurrency) as exe:
futures = [
exe.submit(answer_single_question, example, args.model_id, answers_file, visualizer)
for example in tasks_to_run
]
for f in tqdm(as_completed(futures), total=len(tasks_to_run), desc="Processing tasks"):
f.result()
# for example in tasks_to_run:
# answer_single_question(example, args.model_id, answers_file, visualizer)
print("All tasks processed.")
if __name__ == "__main__":
main()
|