File size: 22,526 Bytes
ac180a4
 
 
 
 
0070112
 
ac180a4
 
1868b08
432ecb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac180a4
 
 
 
 
 
 
 
 
 
 
 
 
 
1868b08
ac180a4
 
 
 
 
 
1868b08
ac180a4
 
10e9b7d
ac180a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74eacfa
 
 
 
c905353
74eacfa
ac180a4
74eacfa
 
ac180a4
 
 
519da76
ac180a4
 
 
 
 
 
 
 
 
 
 
 
74eacfa
 
 
519da76
74eacfa
519da76
 
 
 
74eacfa
519da76
74eacfa
ac180a4
 
 
74eacfa
0070112
 
 
74eacfa
0070112
74eacfa
0070112
 
 
 
 
ac180a4
 
 
 
 
 
 
 
 
0070112
 
 
 
 
74eacfa
0070112
 
 
 
74eacfa
0070112
 
 
 
 
 
 
ac180a4
0070112
 
 
 
 
 
 
 
 
 
 
 
 
 
74eacfa
0070112
 
 
 
74eacfa
 
0070112
 
 
 
 
 
 
 
 
 
 
 
 
 
74eacfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac180a4
74eacfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac180a4
0070112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74eacfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0070112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74eacfa
0070112
 
 
 
 
 
 
ac180a4
74eacfa
0070112
ac180a4
 
 
74eacfa
ac180a4
 
 
 
 
 
 
 
74eacfa
 
ac180a4
74eacfa
ac180a4
 
 
 
74eacfa
 
ac180a4
 
 
 
 
74eacfa
 
 
ac180a4
 
 
 
74eacfa
 
 
 
 
 
 
ac180a4
 
e80aab9
 
ac180a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import time
import sys
from pathlib import Path

# Fix cookies import by creating a module structure dynamically
current_dir = os.path.dirname(os.path.abspath(__file__))
if current_dir not in sys.path:
    sys.path.insert(0, current_dir)

# Create __init__.py file if it doesn't exist
init_path = os.path.join(current_dir, "__init__.py")
if not os.path.exists(init_path):
    with open(init_path, "w") as f:
        f.write("")  # Create empty __init__.py file

# Now imports should work
try:
    from cookies import COOKIES
    # Test the import to ensure it works
    print("Successfully imported COOKIES")
except ImportError as e:
    print(f"Error importing COOKIES: {e}")
    # If import fails, try a direct import with modified sys.modules
    import cookies
    sys.modules[__name__ + '.cookies'] = cookies
    print("Added cookies to sys.modules")

# Now the rest of your imports should work
from dotenv import load_dotenv
from huggingface_hub import login
from text_inspector_tool import TextInspectorTool
from text_web_browser import (
    ArchiveSearchTool,
    FinderTool,
    FindNextTool,
    PageDownTool,
    PageUpTool,
    SimpleTextBrowser,
    VisitTool,
)
from visual_qa import visualizer
from reformulator import prepare_response

from smolagents import (
    CodeAgent,
    GoogleSearchTool,
    LiteLLMModel,
    ToolCallingAgent,
)

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# GAIA system prompt for exact answer format
GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""

# --- Smolagent Implementation ---
load_dotenv(override=True)

# Try to login with HF token from env or secrets
try:
    hf_token = os.getenv("HF_TOKEN")
    if hf_token:
        login(hf_token)
        print("Successfully logged in to Hugging Face")
    else:
        print("No HF_TOKEN found in environment")
except Exception as e:
    print(f"Error logging in to Hugging Face: {e}")

# Custom settings for your agent
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"

BROWSER_CONFIG = {
    "viewport_size": 1024 * 5,
    "downloads_folder": "downloads_folder",
    "request_kwargs": {
        "headers": {"User-Agent": user_agent},
        "timeout": 300,
    },
    "serpapi_key": os.getenv("SERPAPI_API_KEY"),
}

# Create downloads folder if it doesn't exist
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)

class SmolaAgent:
    def __init__(self):
        print("Initializing SmolaAgent...")
        
        # Initialize model
        model_id = "o1"  # You can adjust this or make it configurable
        model_params = {
            "model_id": model_id,
            "custom_role_conversions": custom_role_conversions,
            "max_completion_tokens": 8192,
        }
        if model_id == "o1":
            model_params["reasoning_effort"] = "high"
        
        self.model = LiteLLMModel(**model_params)
        
        # Create agent with tools
        text_limit = 100000
        browser = SimpleTextBrowser(**BROWSER_CONFIG)
        WEB_TOOLS = [
            GoogleSearchTool(provider="serper"),
            VisitTool(browser),
            PageUpTool(browser),
            PageDownTool(browser),
            FinderTool(browser),
            FindNextTool(browser),
            ArchiveSearchTool(browser),
            TextInspectorTool(self.model, text_limit),
        ]
        
        # Create text webbrowser agent
        self.text_webbrowser_agent = ToolCallingAgent(
            model=self.model,
            tools=WEB_TOOLS,
            max_steps=20,
            verbosity_level=2,
            planning_interval=4,
            name="search_agent",
            description="""A team member that will search the internet to answer your question.
        Ask him for all your questions that require browsing the web.
        Provide him as much context as possible, in particular if you need to search on a specific timeframe!
        And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
        Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
        """,
            provide_run_summary=True,
        )
        
        self.text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files.
        If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
        Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information."""

        # Create manager agent
        self.manager_agent = CodeAgent(
            model=self.model,
            tools=[visualizer, TextInspectorTool(self.model, text_limit)],
            max_steps=12,
            verbosity_level=2,
            additional_authorized_imports=["*"],
            planning_interval=4,
            managed_agents=[self.text_webbrowser_agent],
        )
        
        print("SmolaAgent initialized successfully.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question[:50]}...")
        
        # Include the GAIA system prompt in the question to ensure proper answer format
        augmented_question = f"""You have one question to answer. It is paramount that you provide a correct answer.
Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
Run verification steps if that's needed, you must make sure you find the correct answer!

{GAIA_SYSTEM_PROMPT}

Here is the task:
{question}"""
        
        try:
            # Run the agent
            result = self.manager_agent.run(augmented_question)
            
            # Use reformulator to get properly formatted final answer
            agent_memory = self.manager_agent.write_memory_to_messages()
            
            # Add the GAIA system prompt to the reformulation to ensure correct format
            for message in agent_memory:
                if message.get("role") == "system" and message.get("content"):
                    if isinstance(message["content"], list):
                        for content_item in message["content"]:
                            if content_item.get("type") == "text":
                                content_item["text"] = GAIA_SYSTEM_PROMPT + "\n\n" + content_item["text"]
                    else:
                        message["content"] = GAIA_SYSTEM_PROMPT + "\n\n" + message["content"]
                    break
            
            final_answer = prepare_response(augmented_question, agent_memory, self.model)
            
            print(f"Agent returning answer: {final_answer}")
            return final_answer
        
        except Exception as e:
            print(f"Error running agent: {e}")
            return "FINAL ANSWER: Unable to determine"

# Function to extract the exact answer from agent response
def extract_final_answer(agent_response):
    if "FINAL ANSWER:" in agent_response:
        answer = agent_response.split("FINAL ANSWER:")[1].strip()
        
        # Additional cleaning to ensure exact match
        # Remove any trailing punctuation
        answer = answer.rstrip('.,!?;:')
        
        # Clean numbers (remove commas and units)
        # This is a simple example - you might need more sophisticated cleaning
        words = answer.split()
        for i, word in enumerate(words):
            # Try to convert to a number to remove commas and format correctly
            try:
                num = float(word.replace(',', '').replace('$', '').replace('%', ''))
                # Convert to int if it's a whole number
                words[i] = str(int(num)) if num.is_integer() else str(num)
            except (ValueError, AttributeError):
                # Not a number, leave as is
                pass
        
        return ' '.join(words)
    
    return "Unable to determine"

# Constants for file paths
QUESTIONS_CACHE_FILE = "cached_questions.json"
ANSWERS_CACHE_FILE = "cached_answers.json"
SUBMISSION_READY_FILE = "submission_ready.json"

def process_questions(profile: gr.OAuthProfile | None):
    """
    Processes all questions using the agent and saves the answers to cache.
    Does not submit the answers.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    # 1. Instantiate Agent
    try:
        agent = SmolaAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # 2. Use cached questions only
    if os.path.exists(QUESTIONS_CACHE_FILE) and os.path.getsize(QUESTIONS_CACHE_FILE) > 10:
        print(f"Loading cached questions from {QUESTIONS_CACHE_FILE}")
        try:
            with open(QUESTIONS_CACHE_FILE, 'r') as f:
                questions_data = json.load(f)
            print(f"Loaded {len(questions_data)} questions from cache")
        except Exception as e:
            print(f"Error loading cached questions: {e}")
            return f"Error loading cached questions: {e}", None
    else:
        return "No cached questions found. Please create a cached_questions.json file.", None

    # 3. Run your Agent
    results_log = []
    processed_count = 0
    
    # Try to load cached answers
    cached_answers = {}
    if os.path.exists(ANSWERS_CACHE_FILE):
        try:
            with open(ANSWERS_CACHE_FILE, 'r') as f:
                cached_answers = json.load(f)
            print(f"Loaded {len(cached_answers)} cached answers")
        except Exception as e:
            print(f"Error loading cached answers: {e}")
    
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        
        # Check if we already have a cached answer for this task
        if task_id in cached_answers:
            print(f"Using cached answer for task {task_id}")
            full_response = cached_answers[task_id]['full_response']
            submitted_answer = cached_answers[task_id]['submitted_answer']
            processed_count += 1
        else:
            try:
                # Check for associated files with manual retry
                try:
                    api_url = DEFAULT_API_URL
                    files_url = f"{api_url}/files/{task_id}"
                    files_response = requests.get(files_url, timeout=15)
                    if files_response.status_code == 200:
                        print(f"Task {task_id} has associated files")
                        # Handle files if needed
                except Exception as e:
                    print(f"Error checking for files for task {task_id}: {e}")
                
                # Get agent response
                full_response = agent(question_text)
                
                # Extract final answer
                submitted_answer = extract_final_answer(full_response)
                
                # Cache this answer
                cached_answers[task_id] = {
                    'full_response': full_response,
                    'submitted_answer': submitted_answer
                }
                
                # Save to cache after each question to avoid losing progress
                try:
                    with open(ANSWERS_CACHE_FILE, 'w') as f:
                        json.dump(cached_answers, f)
                except Exception as e:
                    print(f"Warning: Failed to save answer cache: {e}")
                
                processed_count += 1
                
            except Exception as e:
                print(f"Error running agent on task {task_id}: {e}")
                full_response = f"AGENT ERROR: {e}"
                submitted_answer = "Unable to determine"
        
        # Log for display
        results_log.append({
            "Task ID": task_id, 
            "Question": question_text, 
            "Submitted Answer": submitted_answer,
            "Full Response": full_response
        })
        
        print(f"Processed task {task_id}, answer: {submitted_answer}")
    
    # Prepare submission data and save for later submission
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
    
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": [
            {
                "task_id": task_id,
                "submitted_answer": cached_answers[task_id]["submitted_answer"],
                "reasoning_trace": cached_answers[task_id]["full_response"]
            }
            for task_id in cached_answers
        ]
    }
    
    # Save submission data for later use
    try:
        with open(SUBMISSION_READY_FILE, 'w') as f:
            json.dump(submission_data, f)
        print(f"Saved submission data to {SUBMISSION_READY_FILE}")
    except Exception as e:
        print(f"Warning: Failed to save submission data: {e}")
    
    status_message = f"Processing complete. Processed {processed_count} questions. Ready for submission."
    print(status_message)
    
    results_df = pd.DataFrame(results_log)
    return status_message, results_df

def submit_answers(profile: gr.OAuthProfile | None):
    """
    Submits previously processed answers to the evaluation server.
    """
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    
    # Check if submission data exists
    if not os.path.exists(SUBMISSION_READY_FILE):
        return "No submission data found. Please process questions first.", None
    
    # Load submission data
    try:
        with open(SUBMISSION_READY_FILE, 'r') as f:
            submission_data = json.load(f)
        print(f"Loaded submission data with {len(submission_data['answers'])} answers")
    except Exception as e:
        print(f"Error loading submission data: {e}")
        return f"Error loading submission data: {e}", None
    
    # Update username in case it's different
    submission_data["username"] = username.strip()
    
    # Submit with robust retry mechanism
    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"
    print(f"Submitting {len(submission_data['answers'])} answers to: {submit_url}")
    
    try:
        # Use manual retry for submission
        max_attempts = 5
        base_wait = 30  # Start with a long wait time
        
        for attempt in range(max_attempts):
            print(f"Submission attempt {attempt+1}/{max_attempts}")
            
            try:
                response = requests.post(submit_url, json=submission_data, timeout=60)
                
                if response.status_code == 200:
                    result_data = response.json()
                    final_status = (
                        f"Submission Successful!\n"
                        f"User: {result_data.get('username')}\n"
                        f"Overall Score: {result_data.get('score', 'N/A')}% "
                        f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
                        f"Message: {result_data.get('message', 'No message received.')}"
                    )
                    print("Submission successful.")
                    
                    # Load and return results for display
                    try:
                        with open(ANSWERS_CACHE_FILE, 'r') as f:
                            cached_answers = json.load(f)
                        
                        # Load questions to display alongside answers
                        with open(QUESTIONS_CACHE_FILE, 'r') as f:
                            questions_data = json.load(f)
                        
                        question_map = {q["task_id"]: q["question"] for q in questions_data}
                        
                        results_log = [
                            {
                                "Task ID": task_id,
                                "Question": question_map.get(task_id, "Unknown"),
                                "Submitted Answer": cached_answers[task_id]["submitted_answer"]
                            }
                            for task_id in cached_answers
                        ]
                        
                        return final_status, pd.DataFrame(results_log)
                    except Exception as e:
                        print(f"Error preparing results display: {e}")
                        return final_status, None
                    
                elif response.status_code == 429:
                    wait_time = base_wait * (2 ** attempt)
                    print(f"Rate limited (429). Waiting {wait_time} seconds before retry...")
                    time.sleep(wait_time)
                else:
                    print(f"Submission failed with status code: {response.status_code}")
                    error_detail = f"Server responded with status {response.status_code}."
                    try:
                        error_json = response.json()
                        error_detail += f" Detail: {error_json.get('detail', response.text)}"
                    except:
                        error_detail += f" Response: {response.text[:500]}"
                    
                    # For non-429 errors, don't retry
                    status_message = f"Submission Failed: {error_detail}"
                    print(status_message)
                    return status_message, None
                    
            except requests.exceptions.RequestException as e:
                print(f"Request error during submission: {e}")
                time.sleep(base_wait)
        
        # If we get here, all attempts failed
        status_message = f"Submission Failed: Maximum retry attempts exceeded."
        print(status_message)
        return status_message, None
        
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        return status_message, None

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Smolagent GAIA Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Process Questions' to run the agent on all questions and save answers.
        3. After processing is complete, click 'Submit Answers' to submit the answers to the evaluation server.
        ---
        **Note:** Processing questions will take time as the agent processes each question. The agent is specifically configured to 
        format answers according to the GAIA benchmark requirements:
        - Numbers: No commas, no units
        - Strings: No articles, no abbreviations
        - Lists: Comma-separated values following the above rules
        
        Separating processing and submission helps avoid losing work due to rate limiting or other errors.
        """
    )

    gr.LoginButton()

    with gr.Row():
        process_button = gr.Button("Process Questions")
        submit_button = gr.Button("Submit Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    process_button.click(
        fn=process_questions,
        outputs=[status_output, results_table]
    )
    
    submit_button.click(
        fn=submit_answers,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co./spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Smolagent GAIA Evaluation...")
    demo.launch(debug=True, share=False)