File size: 22,526 Bytes
ac180a4 0070112 ac180a4 1868b08 432ecb9 ac180a4 1868b08 ac180a4 1868b08 ac180a4 10e9b7d ac180a4 74eacfa c905353 74eacfa ac180a4 74eacfa ac180a4 519da76 ac180a4 74eacfa 519da76 74eacfa 519da76 74eacfa 519da76 74eacfa ac180a4 74eacfa 0070112 74eacfa 0070112 74eacfa 0070112 ac180a4 0070112 74eacfa 0070112 74eacfa 0070112 ac180a4 0070112 74eacfa 0070112 74eacfa 0070112 74eacfa ac180a4 74eacfa ac180a4 0070112 74eacfa 0070112 74eacfa 0070112 ac180a4 74eacfa 0070112 ac180a4 74eacfa ac180a4 74eacfa ac180a4 74eacfa ac180a4 74eacfa ac180a4 74eacfa ac180a4 74eacfa ac180a4 e80aab9 ac180a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import time
import sys
from pathlib import Path
# Fix cookies import by creating a module structure dynamically
current_dir = os.path.dirname(os.path.abspath(__file__))
if current_dir not in sys.path:
sys.path.insert(0, current_dir)
# Create __init__.py file if it doesn't exist
init_path = os.path.join(current_dir, "__init__.py")
if not os.path.exists(init_path):
with open(init_path, "w") as f:
f.write("") # Create empty __init__.py file
# Now imports should work
try:
from cookies import COOKIES
# Test the import to ensure it works
print("Successfully imported COOKIES")
except ImportError as e:
print(f"Error importing COOKIES: {e}")
# If import fails, try a direct import with modified sys.modules
import cookies
sys.modules[__name__ + '.cookies'] = cookies
print("Added cookies to sys.modules")
# Now the rest of your imports should work
from dotenv import load_dotenv
from huggingface_hub import login
from text_inspector_tool import TextInspectorTool
from text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from visual_qa import visualizer
from reformulator import prepare_response
from smolagents import (
CodeAgent,
GoogleSearchTool,
LiteLLMModel,
ToolCallingAgent,
)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# GAIA system prompt for exact answer format
GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
# --- Smolagent Implementation ---
load_dotenv(override=True)
# Try to login with HF token from env or secrets
try:
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(hf_token)
print("Successfully logged in to Hugging Face")
else:
print("No HF_TOKEN found in environment")
except Exception as e:
print(f"Error logging in to Hugging Face: {e}")
# Custom settings for your agent
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
# Create downloads folder if it doesn't exist
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
class SmolaAgent:
def __init__(self):
print("Initializing SmolaAgent...")
# Initialize model
model_id = "o1" # You can adjust this or make it configurable
model_params = {
"model_id": model_id,
"custom_role_conversions": custom_role_conversions,
"max_completion_tokens": 8192,
}
if model_id == "o1":
model_params["reasoning_effort"] = "high"
self.model = LiteLLMModel(**model_params)
# Create agent with tools
text_limit = 100000
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(provider="serper"),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(self.model, text_limit),
]
# Create text webbrowser agent
self.text_webbrowser_agent = ToolCallingAgent(
model=self.model,
tools=WEB_TOOLS,
max_steps=20,
verbosity_level=2,
planning_interval=4,
name="search_agent",
description="""A team member that will search the internet to answer your question.
Ask him for all your questions that require browsing the web.
Provide him as much context as possible, in particular if you need to search on a specific timeframe!
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
""",
provide_run_summary=True,
)
self.text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files.
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information."""
# Create manager agent
self.manager_agent = CodeAgent(
model=self.model,
tools=[visualizer, TextInspectorTool(self.model, text_limit)],
max_steps=12,
verbosity_level=2,
additional_authorized_imports=["*"],
planning_interval=4,
managed_agents=[self.text_webbrowser_agent],
)
print("SmolaAgent initialized successfully.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:50]}...")
# Include the GAIA system prompt in the question to ensure proper answer format
augmented_question = f"""You have one question to answer. It is paramount that you provide a correct answer.
Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
Run verification steps if that's needed, you must make sure you find the correct answer!
{GAIA_SYSTEM_PROMPT}
Here is the task:
{question}"""
try:
# Run the agent
result = self.manager_agent.run(augmented_question)
# Use reformulator to get properly formatted final answer
agent_memory = self.manager_agent.write_memory_to_messages()
# Add the GAIA system prompt to the reformulation to ensure correct format
for message in agent_memory:
if message.get("role") == "system" and message.get("content"):
if isinstance(message["content"], list):
for content_item in message["content"]:
if content_item.get("type") == "text":
content_item["text"] = GAIA_SYSTEM_PROMPT + "\n\n" + content_item["text"]
else:
message["content"] = GAIA_SYSTEM_PROMPT + "\n\n" + message["content"]
break
final_answer = prepare_response(augmented_question, agent_memory, self.model)
print(f"Agent returning answer: {final_answer}")
return final_answer
except Exception as e:
print(f"Error running agent: {e}")
return "FINAL ANSWER: Unable to determine"
# Function to extract the exact answer from agent response
def extract_final_answer(agent_response):
if "FINAL ANSWER:" in agent_response:
answer = agent_response.split("FINAL ANSWER:")[1].strip()
# Additional cleaning to ensure exact match
# Remove any trailing punctuation
answer = answer.rstrip('.,!?;:')
# Clean numbers (remove commas and units)
# This is a simple example - you might need more sophisticated cleaning
words = answer.split()
for i, word in enumerate(words):
# Try to convert to a number to remove commas and format correctly
try:
num = float(word.replace(',', '').replace('$', '').replace('%', ''))
# Convert to int if it's a whole number
words[i] = str(int(num)) if num.is_integer() else str(num)
except (ValueError, AttributeError):
# Not a number, leave as is
pass
return ' '.join(words)
return "Unable to determine"
# Constants for file paths
QUESTIONS_CACHE_FILE = "cached_questions.json"
ANSWERS_CACHE_FILE = "cached_answers.json"
SUBMISSION_READY_FILE = "submission_ready.json"
def process_questions(profile: gr.OAuthProfile | None):
"""
Processes all questions using the agent and saves the answers to cache.
Does not submit the answers.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# 1. Instantiate Agent
try:
agent = SmolaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Use cached questions only
if os.path.exists(QUESTIONS_CACHE_FILE) and os.path.getsize(QUESTIONS_CACHE_FILE) > 10:
print(f"Loading cached questions from {QUESTIONS_CACHE_FILE}")
try:
with open(QUESTIONS_CACHE_FILE, 'r') as f:
questions_data = json.load(f)
print(f"Loaded {len(questions_data)} questions from cache")
except Exception as e:
print(f"Error loading cached questions: {e}")
return f"Error loading cached questions: {e}", None
else:
return "No cached questions found. Please create a cached_questions.json file.", None
# 3. Run your Agent
results_log = []
processed_count = 0
# Try to load cached answers
cached_answers = {}
if os.path.exists(ANSWERS_CACHE_FILE):
try:
with open(ANSWERS_CACHE_FILE, 'r') as f:
cached_answers = json.load(f)
print(f"Loaded {len(cached_answers)} cached answers")
except Exception as e:
print(f"Error loading cached answers: {e}")
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Check if we already have a cached answer for this task
if task_id in cached_answers:
print(f"Using cached answer for task {task_id}")
full_response = cached_answers[task_id]['full_response']
submitted_answer = cached_answers[task_id]['submitted_answer']
processed_count += 1
else:
try:
# Check for associated files with manual retry
try:
api_url = DEFAULT_API_URL
files_url = f"{api_url}/files/{task_id}"
files_response = requests.get(files_url, timeout=15)
if files_response.status_code == 200:
print(f"Task {task_id} has associated files")
# Handle files if needed
except Exception as e:
print(f"Error checking for files for task {task_id}: {e}")
# Get agent response
full_response = agent(question_text)
# Extract final answer
submitted_answer = extract_final_answer(full_response)
# Cache this answer
cached_answers[task_id] = {
'full_response': full_response,
'submitted_answer': submitted_answer
}
# Save to cache after each question to avoid losing progress
try:
with open(ANSWERS_CACHE_FILE, 'w') as f:
json.dump(cached_answers, f)
except Exception as e:
print(f"Warning: Failed to save answer cache: {e}")
processed_count += 1
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
full_response = f"AGENT ERROR: {e}"
submitted_answer = "Unable to determine"
# Log for display
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Full Response": full_response
})
print(f"Processed task {task_id}, answer: {submitted_answer}")
# Prepare submission data and save for later submission
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": [
{
"task_id": task_id,
"submitted_answer": cached_answers[task_id]["submitted_answer"],
"reasoning_trace": cached_answers[task_id]["full_response"]
}
for task_id in cached_answers
]
}
# Save submission data for later use
try:
with open(SUBMISSION_READY_FILE, 'w') as f:
json.dump(submission_data, f)
print(f"Saved submission data to {SUBMISSION_READY_FILE}")
except Exception as e:
print(f"Warning: Failed to save submission data: {e}")
status_message = f"Processing complete. Processed {processed_count} questions. Ready for submission."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def submit_answers(profile: gr.OAuthProfile | None):
"""
Submits previously processed answers to the evaluation server.
"""
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# Check if submission data exists
if not os.path.exists(SUBMISSION_READY_FILE):
return "No submission data found. Please process questions first.", None
# Load submission data
try:
with open(SUBMISSION_READY_FILE, 'r') as f:
submission_data = json.load(f)
print(f"Loaded submission data with {len(submission_data['answers'])} answers")
except Exception as e:
print(f"Error loading submission data: {e}")
return f"Error loading submission data: {e}", None
# Update username in case it's different
submission_data["username"] = username.strip()
# Submit with robust retry mechanism
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(submission_data['answers'])} answers to: {submit_url}")
try:
# Use manual retry for submission
max_attempts = 5
base_wait = 30 # Start with a long wait time
for attempt in range(max_attempts):
print(f"Submission attempt {attempt+1}/{max_attempts}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
if response.status_code == 200:
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
# Load and return results for display
try:
with open(ANSWERS_CACHE_FILE, 'r') as f:
cached_answers = json.load(f)
# Load questions to display alongside answers
with open(QUESTIONS_CACHE_FILE, 'r') as f:
questions_data = json.load(f)
question_map = {q["task_id"]: q["question"] for q in questions_data}
results_log = [
{
"Task ID": task_id,
"Question": question_map.get(task_id, "Unknown"),
"Submitted Answer": cached_answers[task_id]["submitted_answer"]
}
for task_id in cached_answers
]
return final_status, pd.DataFrame(results_log)
except Exception as e:
print(f"Error preparing results display: {e}")
return final_status, None
elif response.status_code == 429:
wait_time = base_wait * (2 ** attempt)
print(f"Rate limited (429). Waiting {wait_time} seconds before retry...")
time.sleep(wait_time)
else:
print(f"Submission failed with status code: {response.status_code}")
error_detail = f"Server responded with status {response.status_code}."
try:
error_json = response.json()
error_detail += f" Detail: {error_json.get('detail', response.text)}"
except:
error_detail += f" Response: {response.text[:500]}"
# For non-429 errors, don't retry
status_message = f"Submission Failed: {error_detail}"
print(status_message)
return status_message, None
except requests.exceptions.RequestException as e:
print(f"Request error during submission: {e}")
time.sleep(base_wait)
# If we get here, all attempts failed
status_message = f"Submission Failed: Maximum retry attempts exceeded."
print(status_message)
return status_message, None
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
return status_message, None
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Smolagent GAIA Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Process Questions' to run the agent on all questions and save answers.
3. After processing is complete, click 'Submit Answers' to submit the answers to the evaluation server.
---
**Note:** Processing questions will take time as the agent processes each question. The agent is specifically configured to
format answers according to the GAIA benchmark requirements:
- Numbers: No commas, no units
- Strings: No articles, no abbreviations
- Lists: Comma-separated values following the above rules
Separating processing and submission helps avoid losing work due to rate limiting or other errors.
"""
)
gr.LoginButton()
with gr.Row():
process_button = gr.Button("Process Questions")
submit_button = gr.Button("Submit Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
process_button.click(
fn=process_questions,
outputs=[status_output, results_table]
)
submit_button.click(
fn=submit_answers,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co./spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Smolagent GAIA Evaluation...")
demo.launch(debug=True, share=False) |