File size: 18,250 Bytes
ac180a4 1868b08 432ecb9 ac180a4 1868b08 ac180a4 1868b08 ac180a4 10e9b7d ac180a4 e80aab9 ac180a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import sys
from pathlib import Path
# Fix cookies import by creating a module structure dynamically
current_dir = os.path.dirname(os.path.abspath(__file__))
if current_dir not in sys.path:
sys.path.insert(0, current_dir)
# Create __init__.py file if it doesn't exist
init_path = os.path.join(current_dir, "__init__.py")
if not os.path.exists(init_path):
with open(init_path, "w") as f:
f.write("") # Create empty __init__.py file
# Now imports should work
try:
from cookies import COOKIES
# Test the import to ensure it works
print("Successfully imported COOKIES")
except ImportError as e:
print(f"Error importing COOKIES: {e}")
# If import fails, try a direct import with modified sys.modules
import cookies
sys.modules[__name__ + '.cookies'] = cookies
print("Added cookies to sys.modules")
# Now the rest of your imports should work
from dotenv import load_dotenv
from huggingface_hub import login
from text_inspector_tool import TextInspectorTool
from text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from visual_qa import visualizer
from reformulator import prepare_response
from smolagents import (
CodeAgent,
GoogleSearchTool,
LiteLLMModel,
ToolCallingAgent,
)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# GAIA system prompt for exact answer format
GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
# --- Smolagent Implementation ---
load_dotenv(override=True)
# Try to login with HF token from env or secrets
try:
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(hf_token)
print("Successfully logged in to Hugging Face")
else:
print("No HF_TOKEN found in environment")
except Exception as e:
print(f"Error logging in to Hugging Face: {e}")
# Custom settings for your agent
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
# Create downloads folder if it doesn't exist
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
class SmolaAgent:
def __init__(self):
print("Initializing SmolaAgent...")
# Initialize model
model_id = "o1" # You can adjust this or make it configurable
model_params = {
"model_id": model_id,
"custom_role_conversions": custom_role_conversions,
"max_completion_tokens": 8192,
}
if model_id == "o1":
model_params["reasoning_effort"] = "high"
self.model = LiteLLMModel(**model_params)
# Create agent with tools
text_limit = 100000
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(provider="serper"),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(self.model, text_limit),
]
# Create text webbrowser agent
self.text_webbrowser_agent = ToolCallingAgent(
model=self.model,
tools=WEB_TOOLS,
max_steps=20,
verbosity_level=2,
planning_interval=4,
name="search_agent",
description="""A team member that will search the internet to answer your question.
Ask him for all your questions that require browsing the web.
Provide him as much context as possible, in particular if you need to search on a specific timeframe!
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
""",
provide_run_summary=True,
)
self.text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files.
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information."""
# Create manager agent
self.manager_agent = CodeAgent(
model=self.model,
tools=[visualizer, TextInspectorTool(self.model, text_limit)],
max_steps=12,
verbosity_level=2,
additional_authorized_imports=["*"],
planning_interval=4,
managed_agents=[self.text_webbrowser_agent],
)
print("SmolaAgent initialized successfully.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:50]}...")
# Include the GAIA system prompt in the question to ensure proper answer format
augmented_question = f"""You have one question to answer. It is paramount that you provide a correct answer.
Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
Run verification steps if that's needed, you must make sure you find the correct answer!
{GAIA_SYSTEM_PROMPT}
Here is the task:
{question}"""
try:
# Run the agent
result = self.manager_agent.run(augmented_question)
# Use reformulator to get properly formatted final answer
agent_memory = self.manager_agent.write_memory_to_messages()
# Add the GAIA system prompt to the reformulation to ensure correct format
for message in agent_memory:
if message.get("role") == "system" and message.get("content"):
if isinstance(message["content"], list):
for content_item in message["content"]:
if content_item.get("type") == "text":
content_item["text"] = GAIA_SYSTEM_PROMPT + "\n\n" + content_item["text"]
else:
message["content"] = GAIA_SYSTEM_PROMPT + "\n\n" + message["content"]
break
final_answer = prepare_response(augmented_question, agent_memory, self.model)
print(f"Agent returning answer: {final_answer}")
return final_answer
except Exception as e:
print(f"Error running agent: {e}")
return "FINAL ANSWER: Unable to determine"
# Function to extract the exact answer from agent response
def extract_final_answer(agent_response):
if "FINAL ANSWER:" in agent_response:
answer = agent_response.split("FINAL ANSWER:")[1].strip()
# Additional cleaning to ensure exact match
# Remove any trailing punctuation
answer = answer.rstrip('.,!?;:')
# Clean numbers (remove commas and units)
# This is a simple example - you might need more sophisticated cleaning
words = answer.split()
for i, word in enumerate(words):
# Try to convert to a number to remove commas and format correctly
try:
num = float(word.replace(',', '').replace('$', '').replace('%', ''))
# Convert to int if it's a whole number
words[i] = str(int(num)) if num.is_integer() else str(num)
except (ValueError, AttributeError):
# Not a number, leave as is
pass
return ' '.join(words)
return "Unable to determine"
# Replace BasicAgent with your SmolaAgent in the run_and_submit_all function
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the SmolaAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = SmolaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
# Check if there are files associated with this task
try:
files_url = f"{api_url}/files/{task_id}"
files_response = requests.get(files_url, timeout=15)
if files_response.status_code == 200:
# Save the file and provide its path to the agent
# This depends on what format the files are returned in
print(f"Task {task_id} has associated files")
# Handle files if needed
except Exception as e:
print(f"Error checking for files for task {task_id}: {e}")
# Continue even if file check fails
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Get full agent response
full_response = agent(question_text)
# Extract just the final answer part for submission
submitted_answer = extract_final_answer(full_response)
# Add to submission payload
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer,
"reasoning_trace": full_response # Optional: include full reasoning
})
# Log for display
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Full Response": full_response
})
print(f"Processed task {task_id}, answer: {submitted_answer}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Smolagent GAIA Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Note:** This process will take some time as the agent processes each question. The agent is specifically configured to
format answers according to the GAIA benchmark requirements:
- Numbers: No commas, no units
- Strings: No articles, no abbreviations
- Lists: Comma-separated values following the above rules
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co./spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Smolagent GAIA Evaluation...")
demo.launch(debug=True, share=False) |