|
from pathlib import Path |
|
|
|
import torch |
|
from peft import PeftModel |
|
|
|
import modules.shared as shared |
|
from modules.models import load_model |
|
from modules.text_generation import clear_torch_cache |
|
|
|
|
|
def reload_model(): |
|
shared.model = shared.tokenizer = None |
|
clear_torch_cache() |
|
shared.model, shared.tokenizer = load_model(shared.model_name) |
|
|
|
|
|
def add_lora_to_model(lora_name): |
|
|
|
|
|
|
|
if shared.lora_name not in ['None', ''] or lora_name in ['None', '']: |
|
reload_model() |
|
shared.lora_name = lora_name |
|
|
|
if lora_name not in ['None', '']: |
|
print(f"Adding the LoRA {lora_name} to the model...") |
|
params = {} |
|
if not shared.args.cpu: |
|
params['dtype'] = shared.model.dtype |
|
if hasattr(shared.model, "hf_device_map"): |
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()} |
|
elif shared.args.load_in_8bit: |
|
params['device_map'] = {'': 0} |
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_name}"), **params) |
|
if not shared.args.load_in_8bit and not shared.args.cpu: |
|
shared.model.half() |
|
if not hasattr(shared.model, "hf_device_map"): |
|
if torch.has_mps: |
|
device = torch.device('mps') |
|
shared.model = shared.model.to(device) |
|
else: |
|
shared.model = shared.model.cuda() |
|
|