|
import inspect |
|
import re |
|
import sys |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
import transformers |
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
import modules.shared as shared |
|
|
|
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) |
|
import llama_inference_offload |
|
from modelutils import find_layers |
|
from quant import make_quant |
|
|
|
|
|
def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head'], kernel_switch_threshold=128): |
|
|
|
def noop(*args, **kwargs): |
|
pass |
|
|
|
config = AutoConfig.from_pretrained(model) |
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
transformers.modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = AutoModelForCausalLM.from_config(config) |
|
torch.set_default_dtype(torch.float) |
|
model = model.eval() |
|
layers = find_layers(model) |
|
for name in exclude_layers: |
|
if name in layers: |
|
del layers[name] |
|
|
|
gptq_args = inspect.getfullargspec(make_quant).args |
|
|
|
make_quant_kwargs = { |
|
'module': model, |
|
'names': layers, |
|
'bits': wbits, |
|
} |
|
if 'groupsize' in gptq_args: |
|
make_quant_kwargs['groupsize'] = groupsize |
|
if 'faster' in gptq_args: |
|
make_quant_kwargs['faster'] = faster_kernel |
|
if 'kernel_switch_threshold' in gptq_args: |
|
make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold |
|
|
|
make_quant(**make_quant_kwargs) |
|
|
|
del layers |
|
|
|
print('Loading model ...') |
|
if checkpoint.endswith('.safetensors'): |
|
from safetensors.torch import load_file as safe_load |
|
model.load_state_dict(safe_load(checkpoint), strict=False) |
|
else: |
|
model.load_state_dict(torch.load(checkpoint), strict=False) |
|
model.seqlen = 2048 |
|
print('Done.') |
|
|
|
return model |
|
|
|
|
|
def load_quantized(model_name): |
|
if not shared.args.model_type: |
|
|
|
name = model_name.lower() |
|
if any((k in name for k in ['llama', 'alpaca', 'vicuna'])): |
|
model_type = 'llama' |
|
elif any((k in name for k in ['opt-', 'galactica'])): |
|
model_type = 'opt' |
|
elif any((k in name for k in ['gpt-j', 'pygmalion-6b'])): |
|
model_type = 'gptj' |
|
else: |
|
print("Can't determine model type from model name. Please specify it manually using --model_type " |
|
"argument") |
|
exit() |
|
else: |
|
model_type = shared.args.model_type.lower() |
|
|
|
if shared.args.pre_layer and model_type == 'llama': |
|
load_quant = llama_inference_offload.load_quant |
|
elif model_type in ('llama', 'opt', 'gptj'): |
|
if shared.args.pre_layer: |
|
print("Warning: ignoring --pre_layer because it only works for llama model type.") |
|
load_quant = _load_quant |
|
else: |
|
print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") |
|
exit() |
|
|
|
|
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
found_pts = list(path_to_model.glob("*.pt")) |
|
found_safetensors = list(path_to_model.glob("*.safetensors")) |
|
pt_path = None |
|
|
|
if len(found_pts) == 1: |
|
pt_path = found_pts[0] |
|
elif len(found_safetensors) == 1: |
|
pt_path = found_safetensors[0] |
|
else: |
|
if path_to_model.name.lower().startswith('llama-7b'): |
|
pt_model = f'llama-7b-{shared.args.wbits}bit' |
|
elif path_to_model.name.lower().startswith('llama-13b'): |
|
pt_model = f'llama-13b-{shared.args.wbits}bit' |
|
elif path_to_model.name.lower().startswith('llama-30b'): |
|
pt_model = f'llama-30b-{shared.args.wbits}bit' |
|
elif path_to_model.name.lower().startswith('llama-65b'): |
|
pt_model = f'llama-65b-{shared.args.wbits}bit' |
|
else: |
|
pt_model = f'{model_name}-{shared.args.wbits}bit' |
|
|
|
|
|
for path in [Path(p + ext) for ext in ['.safetensors', '.pt'] for p in [f"{shared.args.model_dir}/{pt_model}", f"{path_to_model}/{pt_model}"]]: |
|
if path.exists(): |
|
print(f"Found {path}") |
|
pt_path = path |
|
break |
|
|
|
if not pt_path: |
|
print("Could not find the quantized model in .pt or .safetensors format, exiting...") |
|
exit() |
|
|
|
|
|
if model_type == 'llama' and shared.args.pre_layer: |
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer) |
|
else: |
|
threshold = False if model_type == 'gptj' else 128 |
|
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) |
|
|
|
|
|
if shared.args.gpu_memory: |
|
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) |
|
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' |
|
max_memory = {} |
|
for i in range(len(memory_map)): |
|
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] |
|
max_memory['cpu'] = max_cpu_memory |
|
|
|
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) |
|
print("Using the following device map for the 4-bit model:", device_map) |
|
|
|
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) |
|
|
|
|
|
elif not shared.args.cpu: |
|
model = model.to(torch.device('cuda:0')) |
|
|
|
return model |
|
|