|
''' |
|
Downloads models from Hugging Face to models/model-name. |
|
|
|
Example: |
|
python download-model.py facebook/opt-1.3b |
|
|
|
''' |
|
|
|
import argparse |
|
import base64 |
|
import datetime |
|
import hashlib |
|
import json |
|
import re |
|
import sys |
|
from pathlib import Path |
|
|
|
import requests |
|
import tqdm |
|
from tqdm.contrib.concurrent import thread_map |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('MODEL', type=str, default=None, nargs='?') |
|
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') |
|
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') |
|
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') |
|
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') |
|
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') |
|
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') |
|
args = parser.parse_args() |
|
|
|
|
|
def get_file(url, output_folder): |
|
filename = Path(url.rsplit('/', 1)[1]) |
|
output_path = output_folder / filename |
|
if output_path.exists() and not args.clean: |
|
|
|
r = requests.get(url, stream=True) |
|
total_size = int(r.headers.get('content-length', 0)) |
|
if output_path.stat().st_size >= total_size: |
|
return |
|
|
|
headers = {'Range': f'bytes={output_path.stat().st_size}-'} |
|
mode = 'ab' |
|
else: |
|
headers = {} |
|
mode = 'wb' |
|
|
|
r = requests.get(url, stream=True, headers=headers) |
|
with open(output_path, mode) as f: |
|
total_size = int(r.headers.get('content-length', 0)) |
|
block_size = 1024 |
|
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t: |
|
for data in r.iter_content(block_size): |
|
t.update(len(data)) |
|
f.write(data) |
|
|
|
|
|
def sanitize_branch_name(branch_name): |
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$") |
|
if pattern.match(branch_name): |
|
return branch_name |
|
else: |
|
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") |
|
|
|
|
|
def select_model_from_default_options(): |
|
models = { |
|
"OPT 6.7B": ("facebook", "opt-6.7b", "main"), |
|
"OPT 2.7B": ("facebook", "opt-2.7b", "main"), |
|
"OPT 1.3B": ("facebook", "opt-1.3b", "main"), |
|
"OPT 350M": ("facebook", "opt-350m", "main"), |
|
"GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"), |
|
"GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"), |
|
"GALACTICA 125M": ("facebook", "galactica-125m", "main"), |
|
"Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"), |
|
"Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"), |
|
"Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"), |
|
"Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"), |
|
} |
|
choices = {} |
|
|
|
print("Select the model that you want to download:\n") |
|
for i, name in enumerate(models): |
|
char = chr(ord('A') + i) |
|
choices[char] = name |
|
print(f"{char}) {name}") |
|
char = chr(ord('A') + len(models)) |
|
print(f"{char}) None of the above") |
|
|
|
print() |
|
print("Input> ", end='') |
|
choice = input()[0].strip().upper() |
|
if choice == char: |
|
print("""\nThen type the name of your desired Hugging Face model in the format organization/name. |
|
|
|
Examples: |
|
facebook/opt-1.3b |
|
EleutherAI/pythia-1.4b-deduped |
|
""") |
|
|
|
print("Input> ", end='') |
|
model = input() |
|
branch = "main" |
|
else: |
|
arr = models[choices[choice]] |
|
model = f"{arr[0]}/{arr[1]}" |
|
branch = arr[2] |
|
|
|
return model, branch |
|
|
|
|
|
def get_download_links_from_huggingface(model, branch): |
|
base = "https://huggingface.co." |
|
page = f"/api/models/{model}/tree/{branch}?cursor=" |
|
cursor = b"" |
|
|
|
links = [] |
|
sha256 = [] |
|
classifications = [] |
|
has_pytorch = False |
|
has_pt = False |
|
has_ggml = False |
|
has_safetensors = False |
|
is_lora = False |
|
while True: |
|
content = requests.get(f"{base}{page}{cursor.decode()}").content |
|
|
|
dict = json.loads(content) |
|
if len(dict) == 0: |
|
break |
|
|
|
for i in range(len(dict)): |
|
fname = dict[i]['path'] |
|
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): |
|
is_lora = True |
|
|
|
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname) |
|
is_safetensors = re.match(".*\.safetensors", fname) |
|
is_pt = re.match(".*\.pt", fname) |
|
is_ggml = re.match("ggml.*\.bin", fname) |
|
is_tokenizer = re.match("tokenizer.*\.model", fname) |
|
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer |
|
|
|
if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)): |
|
if 'lfs' in dict[i]: |
|
sha256.append([fname, dict[i]['lfs']['oid']]) |
|
if is_text: |
|
links.append(f"https://huggingface.co./{model}/resolve/{branch}/{fname}") |
|
classifications.append('text') |
|
continue |
|
if not args.text_only: |
|
links.append(f"https://huggingface.co./{model}/resolve/{branch}/{fname}") |
|
if is_safetensors: |
|
has_safetensors = True |
|
classifications.append('safetensors') |
|
elif is_pytorch: |
|
has_pytorch = True |
|
classifications.append('pytorch') |
|
elif is_pt: |
|
has_pt = True |
|
classifications.append('pt') |
|
elif is_ggml: |
|
has_ggml = True |
|
classifications.append('ggml') |
|
|
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' |
|
cursor = base64.b64encode(cursor) |
|
cursor = cursor.replace(b'=', b'%3D') |
|
|
|
|
|
if (has_pytorch or has_pt) and has_safetensors: |
|
for i in range(len(classifications) - 1, -1, -1): |
|
if classifications[i] in ['pytorch', 'pt']: |
|
links.pop(i) |
|
|
|
return links, sha256, is_lora |
|
|
|
|
|
def download_files(file_list, output_folder, num_threads=8): |
|
thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads, disable=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
model = args.MODEL |
|
branch = args.branch |
|
if model is None: |
|
model, branch = select_model_from_default_options() |
|
else: |
|
if model[-1] == '/': |
|
model = model[:-1] |
|
branch = args.branch |
|
if branch is None: |
|
branch = "main" |
|
else: |
|
try: |
|
branch = sanitize_branch_name(branch) |
|
except ValueError as err_branch: |
|
print(f"Error: {err_branch}") |
|
sys.exit() |
|
|
|
links, sha256, is_lora = get_download_links_from_huggingface(model, branch) |
|
|
|
if args.output is not None: |
|
base_folder = args.output |
|
else: |
|
base_folder = 'models' if not is_lora else 'loras' |
|
|
|
output_folder = f"{'_'.join(model.split('/')[-2:])}" |
|
if branch != 'main': |
|
output_folder += f'_{branch}' |
|
output_folder = Path(base_folder) / output_folder |
|
|
|
if args.check: |
|
|
|
validated = True |
|
for i in range(len(sha256)): |
|
fpath = (output_folder / sha256[i][0]) |
|
|
|
if not fpath.exists(): |
|
print(f"The following file is missing: {fpath}") |
|
validated = False |
|
continue |
|
|
|
with open(output_folder / sha256[i][0], "rb") as f: |
|
bytes = f.read() |
|
file_hash = hashlib.sha256(bytes).hexdigest() |
|
if file_hash != sha256[i][1]: |
|
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') |
|
validated = False |
|
else: |
|
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') |
|
|
|
if validated: |
|
print('[+] Validated checksums of all model files!') |
|
else: |
|
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') |
|
|
|
else: |
|
|
|
|
|
if not output_folder.exists(): |
|
output_folder.mkdir() |
|
with open(output_folder / 'huggingface-metadata.txt', 'w') as f: |
|
f.write(f'url: https://huggingface.co./{model}\n') |
|
f.write(f'branch: {branch}\n') |
|
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n') |
|
sha256_str = '' |
|
for i in range(len(sha256)): |
|
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n' |
|
if sha256_str != '': |
|
f.write(f'sha256sum:\n{sha256_str}') |
|
|
|
|
|
print(f"Downloading the model to {output_folder}") |
|
download_files(links, output_folder, args.threads) |
|
|