File size: 12,771 Bytes
9fb6eb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import sys
import math
import numpy as np
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
import gradio as gr
from transformers import AutoModel, AutoTokenizer
# Constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# Configuration
MODEL_NAME = "OpenGVLab/InternVL2_5-8B" # Smaller model for faster loading
IMAGE_SIZE = 448
# Set up environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Utility functions for image processing
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# Function to split model across GPUs
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
if world_size <= 1:
return "auto"
num_layers = {
'InternVL2_5-1B': 24,
'InternVL2_5-2B': 24,
'InternVL2_5-4B': 36,
'InternVL2_5-8B': 32,
'InternVL2_5-26B': 48,
'InternVL2_5-38B': 64,
'InternVL2_5-78B': 80
}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# Model loading function
def load_model():
print(f"\n=== Loading {MODEL_NAME} ===")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
# Memory info
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB")
# Determine device map
device_map = "auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model_short_name = MODEL_NAME.split('/')[-1]
device_map = split_model(model_short_name)
# Load model and tokenizer
try:
model = AutoModel.from_pretrained(
MODEL_NAME,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=False,
trust_remote_code=True
)
# Fix for image context token ID - needed to make the model work with images
print("Setting image context token ID...")
if hasattr(tokenizer, 'encode'):
# Get special token ID from tokenizer
img_context_token_id = tokenizer.encode("<image>", add_special_tokens=False)[0]
model.img_context_token_id = img_context_token_id
print(f"Set img_context_token_id to {img_context_token_id}")
print(f"✓ Model and tokenizer loaded successfully!")
return model, tokenizer
except Exception as e:
print(f"❌ Error loading model: {e}")
import traceback
traceback.print_exc()
return None, None
# Image analysis function
def analyze_image(model, tokenizer, image, prompt):
try:
# Check if image is valid
if image is None:
return "Please upload an image first."
# Process the image
processed_images = dynamic_preprocess(image, image_size=IMAGE_SIZE)
# Prepare the prompt
text_prompt = f"USER: <image>\n{prompt}\nASSISTANT:"
# Convert inputs for the model
inputs = tokenizer([text_prompt], return_tensors="pt")
# Move inputs to the right device
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
# Add image to the inputs
inputs["images"] = processed_images
# Generate a response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
)
# Decode the outputs
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
assistant_response = generated_text.split("ASSISTANT:")[-1].strip()
return assistant_response
except Exception as e:
import traceback
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}"
return error_msg
# Function to handle two images
def analyze_two_images(model, tokenizer, image1, image2, prompt):
try:
# Check if at least one image is provided
if image1 is None and image2 is None:
return "Please upload at least one image."
results = []
# Process first image if provided
if image1 is not None:
result1 = analyze_image(model, tokenizer, image1, prompt)
results.append(f"# Image 1 Analysis\n\n{result1}")
else:
results.append("# Image 1\n\nNo image uploaded.")
# Process second image if provided
if image2 is not None:
result2 = analyze_image(model, tokenizer, image2, prompt)
results.append(f"# Image 2 Analysis\n\n{result2}")
else:
results.append("# Image 2\n\nNo image uploaded.")
# Combine results
combined_result = f"{results[0]}\n\n---\n\n{results[1]}"
return combined_result
except Exception as e:
import traceback
error_msg = f"Error analyzing images: {str(e)}\n{traceback.format_exc()}"
return error_msg
# Main function
def main():
# Load the model
model, tokenizer = load_model()
if model is None:
# Create an error interface if model loading failed
demo = gr.Interface(
fn=lambda x: "Model loading failed. Please check the logs for details.",
inputs=gr.Textbox(),
outputs=gr.Textbox(),
title="InternVL2.5 Dual Image Analyzer - Error",
description="The model failed to load. Please check the logs for more information."
)
return demo
# Predefined prompts for analysis
prompts = [
"Describe this image in detail.",
"What can you tell me about this image?",
"Is there any text in this image? If so, can you read it?",
"What is the main subject of this image?",
"What emotions or feelings does this image convey?",
"Describe the composition and visual elements of this image.",
"Summarize what you see in this image in one paragraph.",
"Compare these images and describe the differences."
]
# Create the interface with two images
with gr.Blocks(title="InternVL2.5 Dual Image Analyzer") as demo:
gr.Markdown("# 🖼️ InternVL2.5 Dual Image Analyzer")
gr.Markdown("Upload one or two images and ask the InternVL2.5 model to analyze them.")
with gr.Row():
with gr.Column(scale=1):
image1 = gr.Image(type="pil", label="Upload Image 1")
image2 = gr.Image(type="pil", label="Upload Image 2")
prompt = gr.Dropdown(
choices=prompts,
value=prompts[0],
label="Select a prompt or write your own below",
allow_custom_value=True
)
analyze_button = gr.Button("Analyze Images", variant="primary")
with gr.Column(scale=1):
output = gr.Markdown(label="Analysis Results")
analyze_button.click(
fn=lambda img1, img2, p: analyze_two_images(model, tokenizer, img1, img2, p),
inputs=[image1, image2, prompt],
outputs=output
)
# Example images
if os.path.exists("example_images"):
example_files = [f for f in os.listdir("example_images") if f.endswith((".jpg", ".jpeg", ".png"))]
if len(example_files) >= 2:
example1 = os.path.join("example_images", example_files[0])
example2 = os.path.join("example_images", example_files[1])
examples = [
[example1, None, "Describe this image in detail."],
[None, example2, "Describe this image in detail."],
[example1, example2, "Compare these images and describe the differences."]
]
gr.Examples(
examples=examples,
inputs=[image1, image2, prompt]
)
return demo
# Run the application
if __name__ == "__main__":
try:
# Check for GPU
if not torch.cuda.is_available():
print("WARNING: CUDA is not available. The model requires a GPU to function properly.")
# Create and launch the interface
demo = main()
demo.launch(server_name="0.0.0.0")
except Exception as e:
print(f"Error starting the application: {e}")
import traceback
traceback.print_exc() |