|
import os |
|
import sys |
|
import math |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
from PIL import Image |
|
import gradio as gr |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
MODEL_NAME = "OpenGVLab/InternVL2_5-8B" |
|
IMAGE_SIZE = 448 |
|
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_pil, max_num=12): |
|
|
|
processed_images = dynamic_preprocess(image_pil, image_size=IMAGE_SIZE, max_num=max_num) |
|
|
|
|
|
transform = build_transform(IMAGE_SIZE) |
|
pixel_values = [transform(img) for img in processed_images] |
|
pixel_values = torch.stack(pixel_values) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
pixel_values = pixel_values.cuda().to(torch.bfloat16) |
|
else: |
|
pixel_values = pixel_values.to(torch.float32) |
|
|
|
return pixel_values |
|
|
|
|
|
def split_model(model_name): |
|
device_map = {} |
|
world_size = torch.cuda.device_count() |
|
if world_size <= 1: |
|
return "auto" |
|
|
|
num_layers = { |
|
'InternVL2_5-1B': 24, |
|
'InternVL2_5-2B': 24, |
|
'InternVL2_5-4B': 36, |
|
'InternVL2_5-8B': 32, |
|
'InternVL2_5-26B': 48, |
|
'InternVL2_5-38B': 64, |
|
'InternVL2_5-78B': 80 |
|
}[model_name] |
|
|
|
|
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f'language_model.model.layers.{layer_cnt}'] = i |
|
layer_cnt += 1 |
|
device_map['vision_model'] = 0 |
|
device_map['mlp1'] = 0 |
|
device_map['language_model.model.tok_embeddings'] = 0 |
|
device_map['language_model.model.embed_tokens'] = 0 |
|
device_map['language_model.model.rotary_emb'] = 0 |
|
device_map['language_model.output'] = 0 |
|
device_map['language_model.model.norm'] = 0 |
|
device_map['language_model.lm_head'] = 0 |
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 |
|
|
|
return device_map |
|
|
|
|
|
def get_model_dtype(): |
|
return torch.bfloat16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
def load_model(): |
|
print(f"\n=== Loading {MODEL_NAME} ===") |
|
print(f"CUDA available: {torch.cuda.is_available()}") |
|
|
|
model_dtype = get_model_dtype() |
|
print(f"Using model dtype: {model_dtype}") |
|
|
|
if torch.cuda.is_available(): |
|
print(f"GPU count: {torch.cuda.device_count()}") |
|
for i in range(torch.cuda.device_count()): |
|
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") |
|
|
|
|
|
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") |
|
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") |
|
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") |
|
|
|
|
|
device_map = "auto" |
|
if torch.cuda.is_available() and torch.cuda.device_count() > 1: |
|
model_short_name = MODEL_NAME.split('/')[-1] |
|
device_map = split_model(model_short_name) |
|
|
|
|
|
try: |
|
model = AutoModel.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=model_dtype, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
device_map=device_map |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME, |
|
use_fast=False, |
|
trust_remote_code=True |
|
) |
|
|
|
print(f"✓ Model and tokenizer loaded successfully!") |
|
return model, tokenizer |
|
except Exception as e: |
|
print(f"❌ Error loading model: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None, None |
|
|
|
|
|
def analyze_image(model, tokenizer, image, prompt): |
|
try: |
|
|
|
if image is None: |
|
return "Please upload an image first." |
|
|
|
|
|
pixel_values = load_image(image) |
|
|
|
|
|
print(f"Image processed: tensor shape {pixel_values.shape}, dtype {pixel_values.dtype}") |
|
|
|
|
|
generation_config = { |
|
"max_new_tokens": 512, |
|
"do_sample": False |
|
} |
|
|
|
|
|
question = f"<image>\n{prompt}" |
|
response, _ = model.chat( |
|
tokenizer=tokenizer, |
|
pixel_values=pixel_values, |
|
question=question, |
|
generation_config=generation_config, |
|
history=None, |
|
return_history=True |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
import traceback |
|
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}" |
|
return error_msg |
|
|
|
|
|
def main(): |
|
|
|
model, tokenizer = load_model() |
|
|
|
if model is None: |
|
|
|
demo = gr.Interface( |
|
fn=lambda x: "Model loading failed. Please check the logs for details.", |
|
inputs=gr.Textbox(), |
|
outputs=gr.Textbox(), |
|
title="InternVL2.5 Image Analyzer - Error", |
|
description="The model failed to load. Please check the logs for more information." |
|
) |
|
return demo |
|
|
|
|
|
prompts = [ |
|
"Describe this image in detail.", |
|
"What can you tell me about this image?", |
|
"Is there any text in this image? If so, can you read it?", |
|
"What is the main subject of this image?", |
|
"What emotions or feelings does this image convey?", |
|
"Describe the composition and visual elements of this image.", |
|
"Summarize what you see in this image in one paragraph." |
|
] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=lambda img, prompt: analyze_image(model, tokenizer, img, prompt), |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Dropdown(choices=prompts, value=prompts[0], label="Select a prompt or write your own below", |
|
allow_custom_value=True) |
|
], |
|
outputs=gr.Textbox(label="Analysis Results", lines=15), |
|
title="InternVL2.5 Image Analyzer", |
|
description="Upload an image and ask the InternVL2.5 model to analyze it.", |
|
examples=[ |
|
["example_images/example1.jpg", "Describe this image in detail."], |
|
["example_images/example2.jpg", "What can you tell me about this image?"] |
|
], |
|
theme=gr.themes.Soft(), |
|
allow_flagging="never" |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
|
|
if not torch.cuda.is_available(): |
|
print("WARNING: CUDA is not available. The model requires a GPU to function properly.") |
|
|
|
|
|
demo = main() |
|
demo.launch(server_name="0.0.0.0") |
|
except Exception as e: |
|
print(f"Error starting the application: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
|