Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
3 |
from typing import Dict
|
4 |
|
@@ -27,10 +28,21 @@ def classify_text(
|
|
27 |
Returns:
|
28 |
Dict[str, float]: A dictionary mapping each label to its classification score.
|
29 |
"""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Example Input with Mutually Exclusive Labels from News Articles
|
36 |
examples = [
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import pipeline
|
4 |
from typing import Dict
|
5 |
|
|
|
28 |
Returns:
|
29 |
Dict[str, float]: A dictionary mapping each label to its classification score.
|
30 |
"""
|
31 |
+
if not text.strip():
|
32 |
+
return "Error: Please enter some text to classify."
|
33 |
+
if not labels.strip():
|
34 |
+
return "Error: Please enter some labels to classify the text."
|
35 |
+
|
36 |
+
try:
|
37 |
+
# Set device: 0 if GPU available, else -1 for CPU
|
38 |
+
device = 0 if torch.cuda.is_available() else -1
|
39 |
+
|
40 |
+
classifier = pipeline("zero-shot-classification", model=model_name, device=device)
|
41 |
+
labels_list = [label.strip() for label in labels.split(",")]
|
42 |
+
result = classifier(text, candidate_labels=labels_list)
|
43 |
+
return {label: score for label, score in zip(result["labels"], result["scores"])}
|
44 |
+
except Exception as _:
|
45 |
+
return "Error: An unexpected error occurred. Please try again later."
|
46 |
|
47 |
# Example Input with Mutually Exclusive Labels from News Articles
|
48 |
examples = [
|