Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import pipeline
|
4 |
from typing import Dict
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Available models for zero-shot classification
|
7 |
AVAILABLE_MODELS = [
|
8 |
"mjwong/multilingual-e5-large-instruct-xnli-anli",
|
@@ -10,7 +16,7 @@ AVAILABLE_MODELS = [
|
|
10 |
"mjwong/multilingual-e5-large-xnli-anli",
|
11 |
"mjwong/mcontriever-msmarco-xnli",
|
12 |
"mjwong/mcontriever-xnli"
|
13 |
-
]
|
14 |
|
15 |
def classify_text(
|
16 |
model_name: str,
|
@@ -38,7 +44,17 @@ def classify_text(
|
|
38 |
# Set device: 0 if GPU available, else -1 for CPU
|
39 |
device = 0 if torch.cuda.is_available() else -1
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
labels_list = [label.strip() for label in labels.split(",")]
|
43 |
result = classifier(text, candidate_labels=labels_list, multi_label=multi_label)
|
44 |
return {label: score for label, score in zip(result["labels"], result["scores"])}
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, pipeline
|
4 |
from typing import Dict
|
5 |
|
6 |
+
# Custom models for zero-shot classification requiring trust_remote_code=True
|
7 |
+
CUSTOM_MODELS = [
|
8 |
+
"mjwong/gte-multilingual-base-xnli",
|
9 |
+
"mjwong/gte-multilingual-base-xnli-anli"
|
10 |
+
]
|
11 |
+
|
12 |
# Available models for zero-shot classification
|
13 |
AVAILABLE_MODELS = [
|
14 |
"mjwong/multilingual-e5-large-instruct-xnli-anli",
|
|
|
16 |
"mjwong/multilingual-e5-large-xnli-anli",
|
17 |
"mjwong/mcontriever-msmarco-xnli",
|
18 |
"mjwong/mcontriever-xnli"
|
19 |
+
] + CUSTOM_MODELS
|
20 |
|
21 |
def classify_text(
|
22 |
model_name: str,
|
|
|
44 |
# Set device: 0 if GPU available, else -1 for CPU
|
45 |
device = 0 if torch.cuda.is_available() else -1
|
46 |
|
47 |
+
if model_name in CUSTOM_MODELS:
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
classifier = pipeline("zero-shot-classification",
|
50 |
+
model=model_name,
|
51 |
+
tokenizer=tokenizer,
|
52 |
+
trust_remote_code=True
|
53 |
+
)
|
54 |
+
|
55 |
+
else:
|
56 |
+
classifier = pipeline("zero-shot-classification", model=model_name, device=device)
|
57 |
+
|
58 |
labels_list = [label.strip() for label in labels.split(",")]
|
59 |
result = classifier(text, candidate_labels=labels_list, multi_label=multi_label)
|
60 |
return {label: score for label, score in zip(result["labels"], result["scores"])}
|