|
import collections |
|
import json |
|
import math |
|
import os |
|
import re |
|
import threading |
|
from typing import List, Literal, Optional, Tuple, Union |
|
|
|
import gradio as gr |
|
from colorama import Fore, Style, init |
|
|
|
init(autoreset=True) |
|
|
|
import imageio.v3 as iio |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms.functional as TF |
|
from einops import repeat |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
|
|
from seva.geometry import get_camera_dist, get_plucker_coordinates, to_hom_pose |
|
from seva.sampling import ( |
|
EulerEDMSampler, |
|
MultiviewCFG, |
|
MultiviewTemporalCFG, |
|
VanillaCFG, |
|
) |
|
from seva.utils import seed_everything |
|
|
|
try: |
|
|
|
version = torch.__version__ |
|
IS_TORCH_NIGHTLY = "dev" in version |
|
if IS_TORCH_NIGHTLY: |
|
torch._dynamo.config.cache_size_limit = 128 |
|
torch._dynamo.config.accumulated_cache_size_limit = 1024 |
|
torch._dynamo.config.force_parameter_static_shapes = False |
|
except Exception: |
|
IS_TORCH_NIGHTLY = False |
|
|
|
|
|
def pad_indices( |
|
input_indices: List[int], |
|
test_indices: List[int], |
|
T: int, |
|
padding_mode: Literal["first", "last", "none"] = "last", |
|
): |
|
assert padding_mode in ["last", "none"], "`first` padding is not supported yet." |
|
if padding_mode == "last": |
|
padded_indices = [ |
|
i for i in range(T) if i not in (input_indices + test_indices) |
|
] |
|
else: |
|
padded_indices = [] |
|
input_selects = list(range(len(input_indices))) |
|
test_selects = list(range(len(test_indices))) |
|
if max(input_indices) > max(test_indices): |
|
|
|
input_selects += [input_selects[-1]] * len(padded_indices) |
|
input_indices = input_indices + padded_indices |
|
sorted_inds = np.argsort(input_indices) |
|
input_indices = [input_indices[ind] for ind in sorted_inds] |
|
input_selects = [input_selects[ind] for ind in sorted_inds] |
|
else: |
|
|
|
test_selects += [test_selects[-1]] * len(padded_indices) |
|
test_indices = test_indices + padded_indices |
|
sorted_inds = np.argsort(test_indices) |
|
test_indices = [test_indices[ind] for ind in sorted_inds] |
|
test_selects = [test_selects[ind] for ind in sorted_inds] |
|
|
|
if padding_mode == "last": |
|
input_maps = np.array([-1] * T) |
|
test_maps = np.array([-1] * T) |
|
else: |
|
input_maps = np.array([-1] * (len(input_indices) + len(test_indices))) |
|
test_maps = np.array([-1] * (len(input_indices) + len(test_indices))) |
|
input_maps[input_indices] = input_selects |
|
test_maps[test_indices] = test_selects |
|
return input_indices, test_indices, input_maps, test_maps |
|
|
|
|
|
def assemble( |
|
input, |
|
test, |
|
input_maps, |
|
test_maps, |
|
): |
|
T = len(input_maps) |
|
assembled = torch.zeros_like(test[-1:]).repeat_interleave(T, dim=0) |
|
assembled[input_maps != -1] = input[input_maps[input_maps != -1]] |
|
assembled[test_maps != -1] = test[test_maps[test_maps != -1]] |
|
assert np.logical_xor(input_maps != -1, test_maps != -1).all() |
|
return assembled |
|
|
|
|
|
def get_resizing_factor( |
|
target_shape: Tuple[int, int], |
|
current_shape: Tuple[int, int], |
|
cover_target: bool = True, |
|
|
|
|
|
) -> float: |
|
r_bound = target_shape[1] / target_shape[0] |
|
aspect_r = current_shape[1] / current_shape[0] |
|
if r_bound >= 1.0: |
|
if cover_target: |
|
if aspect_r >= r_bound: |
|
factor = min(target_shape) / min(current_shape) |
|
elif aspect_r < 1.0: |
|
factor = max(target_shape) / min(current_shape) |
|
else: |
|
factor = max(target_shape) / max(current_shape) |
|
else: |
|
if aspect_r >= r_bound: |
|
factor = max(target_shape) / max(current_shape) |
|
elif aspect_r < 1.0: |
|
factor = min(target_shape) / max(current_shape) |
|
else: |
|
factor = min(target_shape) / min(current_shape) |
|
else: |
|
if cover_target: |
|
if aspect_r <= r_bound: |
|
factor = min(target_shape) / min(current_shape) |
|
elif aspect_r > 1.0: |
|
factor = max(target_shape) / min(current_shape) |
|
else: |
|
factor = max(target_shape) / max(current_shape) |
|
else: |
|
if aspect_r <= r_bound: |
|
factor = max(target_shape) / max(current_shape) |
|
elif aspect_r > 1.0: |
|
factor = min(target_shape) / max(current_shape) |
|
else: |
|
factor = min(target_shape) / min(current_shape) |
|
return factor |
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner): |
|
keys = [x.input_key for x in conditioner.embedders if x.input_key is not None] |
|
keys = [item for sublist in keys for item in sublist] |
|
return set(keys) |
|
|
|
|
|
def get_wh_with_fixed_shortest_side(w, h, size): |
|
|
|
if size is None or size <= 0: |
|
return w, h |
|
if w < h: |
|
new_w = size |
|
new_h = int(size * h / w) |
|
else: |
|
new_h = size |
|
new_w = int(size * w / h) |
|
return new_w, new_h |
|
|
|
|
|
def load_img_and_K( |
|
image_path_or_size: Union[str, torch.Size], |
|
size: Optional[Union[int, Tuple[int, int]]], |
|
scale: float = 1.0, |
|
center: Tuple[float, float] = (0.5, 0.5), |
|
K: torch.Tensor | None = None, |
|
size_stride: int = 1, |
|
center_crop: bool = False, |
|
image_as_tensor: bool = True, |
|
context_rgb: np.ndarray | None = None, |
|
device: str = "cuda", |
|
): |
|
if isinstance(image_path_or_size, torch.Size): |
|
image = Image.new("RGBA", image_path_or_size[::-1]) |
|
else: |
|
image = Image.open(image_path_or_size).convert("RGBA") |
|
|
|
w, h = image.size |
|
if size is None: |
|
size = (w, h) |
|
|
|
image = np.array(image).astype(np.float32) / 255 |
|
if image.shape[-1] == 4: |
|
rgb, alpha = image[:, :, :3], image[:, :, 3:] |
|
if context_rgb is not None: |
|
image = rgb * alpha + context_rgb * (1 - alpha) |
|
else: |
|
image = rgb * alpha + (1 - alpha) |
|
image = image.transpose(2, 0, 1) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) |
|
image = image.unsqueeze(0) |
|
|
|
if isinstance(size, (tuple, list)): |
|
|
|
|
|
W, H = size |
|
else: |
|
|
|
|
|
W, H = get_wh_with_fixed_shortest_side(w, h, size) |
|
W, H = ( |
|
math.floor(W / size_stride + 0.5) * size_stride, |
|
math.floor(H / size_stride + 0.5) * size_stride, |
|
) |
|
|
|
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w)) |
|
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)] |
|
image = torch.nn.functional.interpolate( |
|
image, resize_size, mode="area", antialias=False |
|
) |
|
if scale < 1.0: |
|
pw = math.ceil((W - resize_size[1]) * 0.5) |
|
ph = math.ceil((H - resize_size[0]) * 0.5) |
|
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0) |
|
|
|
cy_center = int(center[1] * image.shape[-2]) |
|
cx_center = int(center[0] * image.shape[-1]) |
|
if center_crop: |
|
side = min(H, W) |
|
ct = max(0, cy_center - side // 2) |
|
cl = max(0, cx_center - side // 2) |
|
ct = min(ct, image.shape[-2] - side) |
|
cl = min(cl, image.shape[-1] - side) |
|
image = TF.crop(image, top=ct, left=cl, height=side, width=side) |
|
else: |
|
ct = max(0, cy_center - H // 2) |
|
cl = max(0, cx_center - W // 2) |
|
ct = min(ct, image.shape[-2] - H) |
|
cl = min(cl, image.shape[-1] - W) |
|
image = TF.crop(image, top=ct, left=cl, height=H, width=W) |
|
|
|
if K is not None: |
|
K = K.clone() |
|
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1): |
|
K[:2] *= K.new_tensor([rw, rh])[:, None] |
|
else: |
|
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] |
|
K[:2, 2] -= K.new_tensor([cl, ct]) |
|
|
|
if image_as_tensor: |
|
|
|
image = image.to(device) * 2.0 - 1.0 |
|
else: |
|
|
|
image = image.permute(0, 2, 3, 1).numpy()[0] |
|
image = Image.fromarray((image * 255).astype(np.uint8)) |
|
return image, K |
|
|
|
|
|
def transform_img_and_K( |
|
image: torch.Tensor, |
|
size: Union[int, Tuple[int, int]], |
|
scale: float = 1.0, |
|
center: Tuple[float, float] = (0.5, 0.5), |
|
K: torch.Tensor | None = None, |
|
size_stride: int = 1, |
|
mode: str = "crop", |
|
): |
|
assert mode in [ |
|
"crop", |
|
"pad", |
|
"stretch", |
|
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}" |
|
|
|
h, w = image.shape[-2:] |
|
if isinstance(size, (tuple, list)): |
|
|
|
|
|
W, H = size |
|
else: |
|
|
|
|
|
W, H = get_wh_with_fixed_shortest_side(w, h, size) |
|
W, H = ( |
|
math.floor(W / size_stride + 0.5) * size_stride, |
|
math.floor(H / size_stride + 0.5) * size_stride, |
|
) |
|
|
|
if mode == "stretch": |
|
rh, rw = H, W |
|
else: |
|
rfs = get_resizing_factor( |
|
(H, W), |
|
(h, w), |
|
cover_target=mode != "pad", |
|
) |
|
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)] |
|
|
|
rh, rw = int(rh / scale), int(rw / scale) |
|
image = torch.nn.functional.interpolate( |
|
image, (rh, rw), mode="area", antialias=False |
|
) |
|
|
|
cy_center = int(center[1] * image.shape[-2]) |
|
cx_center = int(center[0] * image.shape[-1]) |
|
if mode != "pad": |
|
ct = max(0, cy_center - H // 2) |
|
cl = max(0, cx_center - W // 2) |
|
ct = min(ct, image.shape[-2] - H) |
|
cl = min(cl, image.shape[-1] - W) |
|
image = TF.crop(image, top=ct, left=cl, height=H, width=W) |
|
pl, pt = 0, 0 |
|
else: |
|
pt = max(0, H // 2 - cy_center) |
|
pl = max(0, W // 2 - cx_center) |
|
pb = max(0, H - pt - image.shape[-2]) |
|
pr = max(0, W - pl - image.shape[-1]) |
|
image = TF.pad( |
|
image, |
|
[pl, pt, pr, pb], |
|
) |
|
cl, ct = 0, 0 |
|
|
|
if K is not None: |
|
K = K.clone() |
|
|
|
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1): |
|
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] |
|
else: |
|
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] |
|
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct]) |
|
|
|
return image, K |
|
|
|
|
|
lowvram_mode = False |
|
|
|
|
|
def set_lowvram_mode(mode): |
|
global lowvram_mode |
|
lowvram_mode = mode |
|
|
|
|
|
def load_model(model, device: str = "cuda"): |
|
model.to(device) |
|
|
|
|
|
def unload_model(model): |
|
global lowvram_mode |
|
if lowvram_mode: |
|
model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def infer_prior_stats( |
|
T, |
|
num_input_frames, |
|
num_total_frames, |
|
version_dict, |
|
): |
|
options = version_dict["options"] |
|
chunk_strategy = options.get("chunk_strategy", "nearest") |
|
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T |
|
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T |
|
|
|
if chunk_strategy.startswith("interp"): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_input_frames >= options.get("num_input_semi_dense", 9): |
|
num_prior_frames = ( |
|
math.ceil( |
|
num_total_frames |
|
/ (T_second_pass - 2) |
|
* options.get("num_prior_frames_ratio", 1.0) |
|
) |
|
+ 1 |
|
) |
|
|
|
if num_prior_frames + num_input_frames < T_first_pass: |
|
num_prior_frames = T_first_pass - num_input_frames |
|
|
|
num_prior_frames = max( |
|
num_prior_frames, |
|
options.get("num_prior_frames", 0), |
|
) |
|
|
|
T_first_pass = num_prior_frames + num_input_frames |
|
|
|
if "gt" in chunk_strategy: |
|
T_second_pass = T_second_pass + num_input_frames |
|
|
|
|
|
version_dict["T"] = [T_first_pass, T_second_pass] |
|
|
|
else: |
|
num_prior_frames = ( |
|
math.ceil( |
|
num_total_frames |
|
/ ( |
|
T_second_pass |
|
- 2 |
|
- (num_input_frames if "gt" in chunk_strategy else 0) |
|
) |
|
* options.get("num_prior_frames_ratio", 1.0) |
|
) |
|
+ 1 |
|
) |
|
|
|
if num_prior_frames + num_input_frames < T_first_pass: |
|
num_prior_frames = T_first_pass - num_input_frames |
|
|
|
num_prior_frames = max( |
|
num_prior_frames, |
|
options.get("num_prior_frames", 0), |
|
) |
|
else: |
|
num_prior_frames = max( |
|
T_first_pass - num_input_frames, |
|
options.get("num_prior_frames", 0), |
|
) |
|
|
|
if num_input_frames >= options.get("num_input_semi_dense", 9): |
|
T_first_pass = num_prior_frames + num_input_frames |
|
|
|
|
|
version_dict["T"] = [T_first_pass, T_second_pass] |
|
|
|
return num_prior_frames |
|
|
|
|
|
def infer_prior_inds( |
|
c2ws, |
|
num_prior_frames, |
|
input_frame_indices, |
|
options, |
|
): |
|
chunk_strategy = options.get("chunk_strategy", "nearest") |
|
if chunk_strategy.startswith("interp"): |
|
prior_frame_indices = np.array( |
|
[i for i in range(c2ws.shape[0]) if i not in input_frame_indices] |
|
) |
|
prior_frame_indices = prior_frame_indices[ |
|
np.ceil( |
|
np.linspace( |
|
0, prior_frame_indices.shape[0] - 1, num_prior_frames, endpoint=True |
|
) |
|
).astype(int) |
|
] |
|
else: |
|
prior_frame_indices = [] |
|
while len(prior_frame_indices) < num_prior_frames: |
|
closest_distance = np.abs( |
|
np.arange(c2ws.shape[0])[None] |
|
- np.concatenate( |
|
[np.array(input_frame_indices), np.array(prior_frame_indices)] |
|
)[:, None] |
|
).min(0) |
|
prior_frame_indices.append(np.argsort(closest_distance)[-1]) |
|
return np.sort(prior_frame_indices) |
|
|
|
|
|
def compute_relative_inds( |
|
source_inds, |
|
target_inds, |
|
): |
|
assert len(source_inds) > 2 |
|
|
|
relative_inds = [] |
|
for ind in target_inds: |
|
if ind in source_inds: |
|
relative_ind = int(np.where(source_inds == ind)[0][0]) |
|
elif ind < source_inds[0]: |
|
|
|
relative_ind = -((source_inds[0] - ind) / (source_inds[1] - source_inds[0])) |
|
elif ind > source_inds[-1]: |
|
|
|
relative_ind = len(source_inds) + ( |
|
(ind - source_inds[-1]) / (source_inds[-1] - source_inds[-2]) |
|
) |
|
else: |
|
|
|
lower_inds = source_inds[source_inds < ind] |
|
upper_inds = source_inds[source_inds > ind] |
|
if len(lower_inds) > 0 and len(upper_inds) > 0: |
|
lower_ind = lower_inds[-1] |
|
upper_ind = upper_inds[0] |
|
relative_lower_ind = int(np.where(source_inds == lower_ind)[0][0]) |
|
relative_upper_ind = int(np.where(source_inds == upper_ind)[0][0]) |
|
relative_ind = relative_lower_ind + (ind - lower_ind) / ( |
|
upper_ind - lower_ind |
|
) * (relative_upper_ind - relative_lower_ind) |
|
else: |
|
|
|
relative_inds.append(float("nan")) |
|
relative_inds.append(relative_ind) |
|
return relative_inds |
|
|
|
|
|
def find_nearest_source_inds( |
|
source_c2ws, |
|
target_c2ws, |
|
nearest_num=1, |
|
mode="translation", |
|
): |
|
dists = get_camera_dist(source_c2ws, target_c2ws, mode=mode).cpu().numpy() |
|
sorted_inds = np.argsort(dists, axis=0).T |
|
return sorted_inds[:, :nearest_num] |
|
|
|
|
|
def chunk_input_and_test( |
|
T, |
|
input_c2ws, |
|
test_c2ws, |
|
input_ords, |
|
test_ords, |
|
options, |
|
task: str = "img2img", |
|
chunk_strategy: str = "gt", |
|
gt_input_inds: list = [], |
|
): |
|
M, N = input_c2ws.shape[0], test_c2ws.shape[0] |
|
|
|
chunks = [] |
|
if chunk_strategy.startswith("gt"): |
|
assert len(gt_input_inds) < T, ( |
|
f"Number of gt input frames {len(gt_input_inds)} should be " |
|
f"less than {T} when `gt` chunking strategy is used." |
|
) |
|
assert ( |
|
list(range(M)) == gt_input_inds |
|
), "All input_c2ws should be gt when `gt` chunking strategy is used." |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_test_seen = 0 |
|
while num_test_seen < N: |
|
chunk = [f"!{i:03d}" for i in gt_input_inds] |
|
if chunk_strategy != "gt" and num_test_seen > 0: |
|
pseudo_num_ratio = options.get("pseudo_num_ratio", 0.33) |
|
if (N - num_test_seen) >= math.floor( |
|
(T - len(gt_input_inds)) * pseudo_num_ratio |
|
): |
|
pseudo_num = math.ceil((T - len(gt_input_inds)) * pseudo_num_ratio) |
|
else: |
|
pseudo_num = (T - len(gt_input_inds)) - (N - num_test_seen) |
|
pseudo_num = min(pseudo_num, options.get("pseudo_num_max", 10000)) |
|
|
|
if "ltr" in chunk_strategy: |
|
chunk.extend( |
|
[ |
|
f"!{i + len(gt_input_inds):03d}" |
|
for i in range(num_test_seen - pseudo_num, num_test_seen) |
|
] |
|
) |
|
elif "nearest" in chunk_strategy: |
|
source_inds = np.concatenate( |
|
[ |
|
find_nearest_source_inds( |
|
test_c2ws[:num_test_seen], |
|
test_c2ws[num_test_seen:], |
|
nearest_num=1, |
|
mode="rotation", |
|
), |
|
find_nearest_source_inds( |
|
test_c2ws[:num_test_seen], |
|
test_c2ws[num_test_seen:], |
|
nearest_num=1, |
|
mode="translation", |
|
), |
|
], |
|
axis=1, |
|
) |
|
|
|
temp_pseudo_num = pseudo_num |
|
while True: |
|
nearest_source_inds = np.concatenate( |
|
[ |
|
np.sort( |
|
[ |
|
ind |
|
for (ind, _) in collections.Counter( |
|
[ |
|
item |
|
for item in source_inds[ |
|
: T |
|
- len(gt_input_inds) |
|
- temp_pseudo_num |
|
] |
|
.flatten() |
|
.tolist() |
|
if item |
|
!= ( |
|
num_test_seen - 1 |
|
) |
|
] |
|
).most_common(pseudo_num - 1) |
|
], |
|
).astype(int), |
|
[num_test_seen - 1], |
|
] |
|
) |
|
if len(nearest_source_inds) >= temp_pseudo_num: |
|
break |
|
else: |
|
temp_pseudo_num = len(nearest_source_inds) |
|
pseudo_num = len(nearest_source_inds) |
|
|
|
chunk.extend( |
|
[f"!{i + len(gt_input_inds):03d}" for i in nearest_source_inds] |
|
) |
|
else: |
|
raise NotImplementedError( |
|
f"Chunking strategy {chunk_strategy} for the first pass is not implemented." |
|
) |
|
|
|
chunk.extend( |
|
[ |
|
f">{i:03d}" |
|
for i in range( |
|
num_test_seen, |
|
min(num_test_seen + T - len(gt_input_inds) - pseudo_num, N), |
|
) |
|
] |
|
) |
|
else: |
|
chunk.extend( |
|
[ |
|
f">{i:03d}" |
|
for i in range( |
|
num_test_seen, |
|
min(num_test_seen + T - len(gt_input_inds), N), |
|
) |
|
] |
|
) |
|
|
|
num_test_seen += sum([1 for c in chunk if c.startswith(">")]) |
|
if len(chunk) < T: |
|
chunk.extend(["NULL"] * (T - len(chunk))) |
|
chunks.append(chunk) |
|
|
|
elif chunk_strategy.startswith("nearest"): |
|
input_imgs = np.array([f"!{i:03d}" for i in range(M)]) |
|
test_imgs = np.array([f">{i:03d}" for i in range(N)]) |
|
|
|
match = re.match(r"^nearest-(\d+)$", chunk_strategy) |
|
if match: |
|
nearest_num = int(match.group(1)) |
|
assert ( |
|
nearest_num < T |
|
), f"Nearest number of {nearest_num} should be less than {T}." |
|
source_inds = find_nearest_source_inds( |
|
input_c2ws, |
|
test_c2ws, |
|
nearest_num=nearest_num, |
|
mode="translation", |
|
) |
|
|
|
for i in range(0, N, T - nearest_num): |
|
nearest_source_inds = np.sort( |
|
[ |
|
ind |
|
for (ind, _) in collections.Counter( |
|
source_inds[i : i + T - nearest_num].flatten().tolist() |
|
).most_common(nearest_num) |
|
] |
|
) |
|
chunk = ( |
|
input_imgs[nearest_source_inds].tolist() |
|
+ test_imgs[i : i + T - nearest_num].tolist() |
|
) |
|
chunks.append(chunk + ["NULL"] * (T - len(chunk))) |
|
|
|
else: |
|
|
|
if "gt" not in chunk_strategy: |
|
gt_input_inds = [] |
|
|
|
source_inds = find_nearest_source_inds( |
|
input_c2ws, |
|
test_c2ws, |
|
nearest_num=1, |
|
mode="translation", |
|
)[:, 0] |
|
|
|
test_inds_per_input = {} |
|
for test_idx, input_idx in enumerate(source_inds): |
|
if input_idx not in test_inds_per_input: |
|
test_inds_per_input[input_idx] = [] |
|
test_inds_per_input[input_idx].append(test_idx) |
|
|
|
num_test_seen = 0 |
|
chunk = input_imgs[gt_input_inds].tolist() |
|
candidate_input_inds = sorted(list(test_inds_per_input.keys())) |
|
|
|
while num_test_seen < N: |
|
input_idx = candidate_input_inds[0] |
|
test_inds = test_inds_per_input[input_idx] |
|
input_is_cond = input_idx in gt_input_inds |
|
prefix_inds = [] if input_is_cond else [input_idx] |
|
|
|
if len(chunk) == T - len(prefix_inds) or not candidate_input_inds: |
|
if chunk: |
|
chunk += ["NULL"] * (T - len(chunk)) |
|
chunks.append(chunk) |
|
chunk = input_imgs[gt_input_inds].tolist() |
|
if num_test_seen >= N: |
|
break |
|
continue |
|
|
|
candidate_chunk = ( |
|
input_imgs[prefix_inds].tolist() + test_imgs[test_inds].tolist() |
|
) |
|
|
|
space_left = T - len(chunk) |
|
if len(candidate_chunk) <= space_left: |
|
chunk.extend(candidate_chunk) |
|
num_test_seen += len(test_inds) |
|
candidate_input_inds.pop(0) |
|
else: |
|
chunk.extend(candidate_chunk[:space_left]) |
|
num_input_idx = 0 if input_is_cond else 1 |
|
num_test_seen += space_left - num_input_idx |
|
test_inds_per_input[input_idx] = test_inds[ |
|
space_left - num_input_idx : |
|
] |
|
|
|
if len(chunk) == T: |
|
chunks.append(chunk) |
|
chunk = input_imgs[gt_input_inds].tolist() |
|
|
|
if chunk and chunk != input_imgs[gt_input_inds].tolist(): |
|
chunks.append(chunk + ["NULL"] * (T - len(chunk))) |
|
|
|
elif chunk_strategy.startswith("interp"): |
|
|
|
assert input_ords is not None and test_ords is not None, ( |
|
"When using `interp` chunking strategy, ordering of input " |
|
"and test frames should be provided." |
|
) |
|
|
|
|
|
|
|
if "img2trajvid" in task: |
|
assert ( |
|
list(range(len(gt_input_inds))) == gt_input_inds |
|
), "`img2trajvid` task should put `gt_input_inds` in start." |
|
input_c2ws = input_c2ws[ |
|
[ind for ind in range(M) if ind not in gt_input_inds] |
|
] |
|
input_ords = [ |
|
input_ords[ind] for ind in range(M) if ind not in gt_input_inds |
|
] |
|
M = input_c2ws.shape[0] |
|
|
|
input_ords = [0] + input_ords |
|
|
|
input_ords[-1] += 0.01 |
|
|
|
input_ords = np.array(input_ords)[:, None] |
|
input_ords_ = np.concatenate([input_ords[1:], np.full((1, 1), np.inf)]) |
|
test_ords = np.array(test_ords)[None] |
|
|
|
in_stop_ranges = np.logical_and( |
|
np.repeat(input_ords, N, axis=1) <= np.repeat(test_ords, M + 1, axis=0), |
|
np.repeat(input_ords_, N, axis=1) > np.repeat(test_ords, M + 1, axis=0), |
|
) |
|
assert (in_stop_ranges.sum(1) <= T - 2).all(), ( |
|
"More input frames need to be sampled during the first pass to ensure " |
|
f"#test frames during each forard in the second pass will not exceed {T - 2}." |
|
) |
|
if input_ords[1, 0] <= test_ords[0, 0]: |
|
assert not in_stop_ranges[0].any() |
|
if input_ords[-1, 0] >= test_ords[0, -1]: |
|
assert not in_stop_ranges[-1].any() |
|
|
|
gt_chunk = ( |
|
[f"!{i:03d}" for i in gt_input_inds] if "gt" in chunk_strategy else [] |
|
) |
|
chunk = gt_chunk + [] |
|
|
|
if in_stop_ranges[0].any(): |
|
for j, in_range in enumerate(in_stop_ranges[0]): |
|
if in_range: |
|
chunk.append(f">{j:03d}") |
|
in_stop_ranges = in_stop_ranges[1:] |
|
|
|
i = 0 |
|
base_i = len(gt_input_inds) if "img2trajvid" in task else 0 |
|
chunk.append(f"!{i + base_i:03d}") |
|
while i < len(in_stop_ranges): |
|
in_stop_range = in_stop_ranges[i] |
|
if not in_stop_range.any(): |
|
i += 1 |
|
continue |
|
|
|
input_left = i + 1 < M |
|
space_left = T - len(chunk) |
|
if sum(in_stop_range) + input_left <= space_left: |
|
for j, in_range in enumerate(in_stop_range): |
|
if in_range: |
|
chunk.append(f">{j:03d}") |
|
i += 1 |
|
if input_left: |
|
chunk.append(f"!{i + base_i:03d}") |
|
|
|
else: |
|
chunk += ["NULL"] * space_left |
|
chunks.append(chunk) |
|
chunk = gt_chunk + [f"!{i + base_i:03d}"] |
|
|
|
if len(chunk) > 1: |
|
chunk += ["NULL"] * (T - len(chunk)) |
|
chunks.append(chunk) |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
( |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) = ( |
|
[], |
|
[], |
|
[], |
|
[], |
|
) |
|
for chunk in chunks: |
|
input_inds = [ |
|
int(img.removeprefix("!")) for img in chunk if img.startswith("!") |
|
] |
|
input_sels = [chunk.index(img) for img in chunk if img.startswith("!")] |
|
test_inds = [int(img.removeprefix(">")) for img in chunk if img.startswith(">")] |
|
test_sels = [chunk.index(img) for img in chunk if img.startswith(">")] |
|
input_inds_per_chunk.append(input_inds) |
|
input_sels_per_chunk.append(input_sels) |
|
test_inds_per_chunk.append(test_inds) |
|
test_sels_per_chunk.append(test_sels) |
|
|
|
if options.get("sampler_verbose", True): |
|
|
|
def colorize(item): |
|
if item.startswith("!"): |
|
return f"{Fore.RED}{item}{Style.RESET_ALL}" |
|
elif item.startswith(">"): |
|
return f"{Fore.GREEN}{item}{Style.RESET_ALL}" |
|
return item |
|
|
|
print("\nchunks:") |
|
for chunk in chunks: |
|
print(", ".join(colorize(item) for item in chunk)) |
|
|
|
return ( |
|
chunks, |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) |
|
|
|
|
|
def is_k_in_dict(d, k): |
|
return any(map(lambda x: x.startswith(k), d.keys())) |
|
|
|
|
|
def get_k_from_dict(d, k): |
|
media_d = {} |
|
for key, value in d.items(): |
|
if key == k: |
|
return value |
|
if key.startswith(k): |
|
media = key.split("/")[-1] |
|
if media == "raw": |
|
return value |
|
media_d[media] = value |
|
if len(media_d) == 0: |
|
return torch.tensor([]) |
|
assert ( |
|
len(media_d) == 1 |
|
), f"multiple media found in {d} for key {k}: {media_d.keys()}" |
|
return media_d[media] |
|
|
|
|
|
def update_kv_for_dict(d, k, v): |
|
for key in d.keys(): |
|
if key.startswith(k): |
|
d[key] = v |
|
return d |
|
|
|
|
|
def extend_dict(ds, d): |
|
for key in d.keys(): |
|
if key in ds: |
|
ds[key] = torch.cat([ds[key], d[key]], 0) |
|
else: |
|
ds[key] = d[key] |
|
return ds |
|
|
|
|
|
def replace_or_include_input_for_dict( |
|
samples, |
|
test_indices, |
|
imgs, |
|
c2w, |
|
K, |
|
): |
|
samples_new = {} |
|
for sample, value in samples.items(): |
|
if "rgb" in sample: |
|
imgs[test_indices] = ( |
|
value[test_indices] if value.shape[0] == imgs.shape[0] else value |
|
).to(device=imgs.device, dtype=imgs.dtype) |
|
samples_new[sample] = imgs |
|
elif "c2w" in sample: |
|
c2w[test_indices] = ( |
|
value[test_indices] if value.shape[0] == c2w.shape[0] else value |
|
).to(device=c2w.device, dtype=c2w.dtype) |
|
samples_new[sample] = c2w |
|
elif "intrinsics" in sample: |
|
K[test_indices] = ( |
|
value[test_indices] if value.shape[0] == K.shape[0] else value |
|
).to(device=K.device, dtype=K.dtype) |
|
samples_new[sample] = K |
|
else: |
|
samples_new[sample] = value |
|
return samples_new |
|
|
|
|
|
def decode_output( |
|
samples, |
|
T, |
|
indices=None, |
|
): |
|
|
|
if isinstance(samples, dict): |
|
|
|
for sample, value in samples.items(): |
|
if isinstance(value, torch.Tensor): |
|
value = value.detach().cpu() |
|
elif isinstance(value, np.ndarray): |
|
value = torch.from_numpy(value) |
|
else: |
|
value = torch.tensor(value) |
|
|
|
if indices is not None and value.shape[0] == T: |
|
value = value[indices] |
|
samples[sample] = value |
|
else: |
|
|
|
samples = samples.detach().cpu() |
|
|
|
if indices is not None and samples.shape[0] == T: |
|
samples = samples[indices] |
|
samples = {"samples-rgb/image": samples} |
|
|
|
return samples |
|
|
|
|
|
def save_output( |
|
samples, |
|
save_path, |
|
video_save_fps=2, |
|
): |
|
os.makedirs(save_path, exist_ok=True) |
|
for sample in samples: |
|
media_type = "video" |
|
if "/" in sample: |
|
sample_, media_type = sample.split("/") |
|
else: |
|
sample_ = sample |
|
|
|
value = samples[sample] |
|
if isinstance(value, torch.Tensor): |
|
value = value.detach().cpu() |
|
elif isinstance(value, np.ndarray): |
|
value = torch.from_numpy(value) |
|
else: |
|
value = torch.tensor(value) |
|
|
|
if media_type == "image": |
|
value = (value.permute(0, 2, 3, 1) + 1) / 2.0 |
|
value = (value * 255).clamp(0, 255).to(torch.uint8) |
|
iio.imwrite( |
|
os.path.join(save_path, f"{sample_}.mp4") |
|
if sample_ |
|
else f"{save_path}.mp4", |
|
value, |
|
fps=video_save_fps, |
|
macro_block_size=1, |
|
ffmpeg_log_level="error", |
|
) |
|
os.makedirs(os.path.join(save_path, sample_), exist_ok=True) |
|
for i, s in enumerate(value): |
|
iio.imwrite( |
|
os.path.join(save_path, sample_, f"{i:03d}.png"), |
|
s, |
|
) |
|
elif media_type == "video": |
|
value = (value.permute(0, 2, 3, 1) + 1) / 2.0 |
|
value = (value * 255).clamp(0, 255).to(torch.uint8) |
|
iio.imwrite( |
|
os.path.join(save_path, f"{sample_}.mp4"), |
|
value, |
|
fps=video_save_fps, |
|
macro_block_size=1, |
|
ffmpeg_log_level="error", |
|
) |
|
elif media_type == "raw": |
|
torch.save( |
|
value, |
|
os.path.join(save_path, f"{sample_}.pt"), |
|
) |
|
else: |
|
pass |
|
|
|
|
|
def create_transforms_simple(save_path, img_paths, img_whs, c2ws, Ks): |
|
import os.path as osp |
|
|
|
out_frames = [] |
|
for img_path, img_wh, c2w, K in zip(img_paths, img_whs, c2ws, Ks): |
|
out_frame = { |
|
"fl_x": K[0][0].item(), |
|
"fl_y": K[1][1].item(), |
|
"cx": K[0][2].item(), |
|
"cy": K[1][2].item(), |
|
"w": img_wh[0].item(), |
|
"h": img_wh[1].item(), |
|
"file_path": f"./{osp.relpath(img_path, start=save_path)}" |
|
if img_path is not None |
|
else None, |
|
"transform_matrix": c2w.tolist(), |
|
} |
|
out_frames.append(out_frame) |
|
out = { |
|
|
|
"orientation_override": "none", |
|
"frames": out_frames, |
|
} |
|
with open(osp.join(save_path, "transforms.json"), "w") as of: |
|
json.dump(out, of, indent=5) |
|
|
|
|
|
class GradioTrackedSampler(EulerEDMSampler): |
|
""" |
|
A thin wrapper around the EulerEDMSampler that allows tracking progress and |
|
aborting sampling for gradio demo. |
|
""" |
|
|
|
def __init__(self, abort_event: threading.Event, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.abort_event = abort_event |
|
|
|
def __call__( |
|
self, |
|
denoiser, |
|
x: torch.Tensor, |
|
scale: float | torch.Tensor, |
|
cond: dict, |
|
uc: dict | None = None, |
|
num_steps: int | None = None, |
|
verbose: bool = True, |
|
global_pbar: gr.Progress | None = None, |
|
**guider_kwargs, |
|
) -> torch.Tensor | None: |
|
uc = cond if uc is None else uc |
|
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( |
|
x, |
|
cond, |
|
uc, |
|
num_steps, |
|
) |
|
for i in self.get_sigma_gen(num_sigmas, verbose=verbose): |
|
gamma = ( |
|
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) |
|
if self.s_tmin <= sigmas[i] <= self.s_tmax |
|
else 0.0 |
|
) |
|
x = self.sampler_step( |
|
s_in * sigmas[i], |
|
s_in * sigmas[i + 1], |
|
denoiser, |
|
x, |
|
scale, |
|
cond, |
|
uc, |
|
gamma, |
|
**guider_kwargs, |
|
) |
|
|
|
if global_pbar is not None: |
|
global_pbar.update() |
|
|
|
if self.abort_event.is_set(): |
|
return None |
|
return x |
|
|
|
|
|
def create_samplers( |
|
guider_types: int | list[int], |
|
discretization, |
|
num_frames: list[int] | None, |
|
num_steps: int, |
|
cfg_min: float = 1.0, |
|
device: str | torch.device = "cuda", |
|
abort_event: threading.Event | None = None, |
|
): |
|
guider_mapping = { |
|
0: VanillaCFG, |
|
1: MultiviewCFG, |
|
2: MultiviewTemporalCFG, |
|
} |
|
samplers = [] |
|
if not isinstance(guider_types, (list, tuple)): |
|
guider_types = [guider_types] |
|
for i, guider_type in enumerate(guider_types): |
|
if guider_type not in guider_mapping: |
|
raise ValueError( |
|
f"Invalid guider type {guider_type}. Must be one of {list(guider_mapping.keys())}" |
|
) |
|
guider_cls = guider_mapping[guider_type] |
|
guider_args = () |
|
if guider_type > 0: |
|
guider_args += (cfg_min,) |
|
if guider_type == 2: |
|
assert num_frames is not None |
|
guider_args = (num_frames[i], cfg_min) |
|
guider = guider_cls(*guider_args) |
|
|
|
if abort_event is not None: |
|
sampler = GradioTrackedSampler( |
|
abort_event, |
|
discretization=discretization, |
|
guider=guider, |
|
num_steps=num_steps, |
|
s_churn=0.0, |
|
s_tmin=0.0, |
|
s_tmax=999.0, |
|
s_noise=1.0, |
|
verbose=True, |
|
device=device, |
|
) |
|
else: |
|
sampler = EulerEDMSampler( |
|
discretization=discretization, |
|
guider=guider, |
|
num_steps=num_steps, |
|
s_churn=0.0, |
|
s_tmin=0.0, |
|
s_tmax=999.0, |
|
s_noise=1.0, |
|
verbose=True, |
|
device=device, |
|
) |
|
samplers.append(sampler) |
|
return samplers |
|
|
|
|
|
def get_value_dict( |
|
curr_imgs, |
|
curr_imgs_clip, |
|
curr_input_frame_indices, |
|
curr_c2ws, |
|
curr_Ks, |
|
curr_input_camera_indices, |
|
all_c2ws, |
|
camera_scale=2.0, |
|
): |
|
assert sorted(curr_input_camera_indices) == sorted( |
|
range(len(curr_input_camera_indices)) |
|
) |
|
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8 |
|
|
|
value_dict = {} |
|
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices] |
|
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs) |
|
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool) |
|
value_dict["cond_frames_mask"][curr_input_frame_indices] = True |
|
value_dict["cond_aug"] = 0.0 |
|
|
|
c2w = to_hom_pose(curr_c2ws.float()) |
|
w2c = torch.linalg.inv(c2w) |
|
|
|
|
|
ref_c2ws = all_c2ws |
|
camera_dist_2med = torch.norm( |
|
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values, |
|
dim=-1, |
|
) |
|
valid_mask = camera_dist_2med <= torch.clamp( |
|
torch.quantile(camera_dist_2med, 0.97) * 10, |
|
max=1e6, |
|
) |
|
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True) |
|
w2c = torch.linalg.inv(c2w) |
|
|
|
|
|
camera_dists = c2w[:, :3, 3].clone() |
|
translation_scaling_factor = ( |
|
camera_scale |
|
if torch.isclose( |
|
torch.norm(camera_dists[0]), |
|
torch.zeros(1), |
|
atol=1e-5, |
|
).any() |
|
else (camera_scale / torch.norm(camera_dists[0])) |
|
) |
|
w2c[:, :3, 3] *= translation_scaling_factor |
|
c2w[:, :3, 3] *= translation_scaling_factor |
|
value_dict["plucker_coordinate"], _ = get_plucker_coordinates( |
|
extrinsics_src=w2c[0], |
|
extrinsics=w2c, |
|
intrinsics=curr_Ks.float().clone(), |
|
mode="plucker", |
|
rel_zero_translation=True, |
|
target_size=(H // F, W // F), |
|
return_grid_cam=True, |
|
) |
|
|
|
value_dict["c2w"] = c2w |
|
value_dict["K"] = curr_Ks |
|
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool) |
|
value_dict["camera_mask"][curr_input_camera_indices] = True |
|
|
|
return value_dict |
|
|
|
|
|
def do_sample( |
|
model, |
|
ae, |
|
conditioner, |
|
denoiser, |
|
sampler, |
|
value_dict, |
|
H, |
|
W, |
|
C, |
|
F, |
|
T, |
|
cfg, |
|
encoding_t=1, |
|
decoding_t=1, |
|
verbose=True, |
|
global_pbar=None, |
|
**_, |
|
): |
|
imgs = value_dict["cond_frames"].to("cuda") |
|
input_masks = value_dict["cond_frames_mask"].to("cuda") |
|
pluckers = value_dict["plucker_coordinate"].to("cuda") |
|
|
|
num_samples = [1, T] |
|
with torch.inference_mode(), torch.autocast("cuda"): |
|
load_model(ae) |
|
load_model(conditioner) |
|
latents = torch.nn.functional.pad( |
|
ae.encode(imgs[input_masks], encoding_t), (0, 0, 0, 0, 0, 1), value=1.0 |
|
) |
|
c_crossattn = repeat(conditioner(imgs[input_masks]).mean(0), "d -> n 1 d", n=T) |
|
uc_crossattn = torch.zeros_like(c_crossattn) |
|
c_replace = latents.new_zeros(T, *latents.shape[1:]) |
|
c_replace[input_masks] = latents |
|
uc_replace = torch.zeros_like(c_replace) |
|
c_concat = torch.cat( |
|
[ |
|
repeat( |
|
input_masks, |
|
"n -> n 1 h w", |
|
h=pluckers.shape[2], |
|
w=pluckers.shape[3], |
|
), |
|
pluckers, |
|
], |
|
1, |
|
) |
|
uc_concat = torch.cat( |
|
[pluckers.new_zeros(T, 1, *pluckers.shape[-2:]), pluckers], 1 |
|
) |
|
c_dense_vector = pluckers |
|
uc_dense_vector = c_dense_vector |
|
|
|
c = { |
|
"crossattn": c_crossattn, |
|
"replace": c_replace, |
|
"concat": c_concat, |
|
"dense_vector": c_dense_vector, |
|
} |
|
uc = { |
|
"crossattn": uc_crossattn, |
|
"replace": uc_replace, |
|
"concat": uc_concat, |
|
"dense_vector": uc_dense_vector, |
|
} |
|
unload_model(ae) |
|
unload_model(conditioner) |
|
|
|
additional_model_inputs = {"num_frames": T} |
|
additional_sampler_inputs = { |
|
"c2w": value_dict["c2w"].to("cuda"), |
|
"K": value_dict["K"].to("cuda"), |
|
"input_frame_mask": value_dict["cond_frames_mask"].to("cuda"), |
|
} |
|
if global_pbar is not None: |
|
additional_sampler_inputs["global_pbar"] = global_pbar |
|
|
|
shape = (math.prod(num_samples), C, H // F, W // F) |
|
randn = torch.randn(shape).to("cuda") |
|
|
|
load_model(model) |
|
samples_z = sampler( |
|
lambda input, sigma, c: denoiser( |
|
model, |
|
input, |
|
sigma, |
|
c, |
|
**additional_model_inputs, |
|
), |
|
randn, |
|
scale=cfg, |
|
cond=c, |
|
uc=uc, |
|
verbose=verbose, |
|
**additional_sampler_inputs, |
|
) |
|
if samples_z is None: |
|
return |
|
unload_model(model) |
|
|
|
load_model(ae) |
|
samples = ae.decode(samples_z, decoding_t) |
|
unload_model(ae) |
|
|
|
return samples |
|
|
|
|
|
def run_one_scene( |
|
task, |
|
version_dict, |
|
model, |
|
ae, |
|
conditioner, |
|
denoiser, |
|
image_cond, |
|
camera_cond, |
|
save_path, |
|
use_traj_prior, |
|
traj_prior_Ks, |
|
traj_prior_c2ws, |
|
seed=23, |
|
gradio=False, |
|
abort_event=None, |
|
first_pass_pbar=None, |
|
second_pass_pbar=None, |
|
): |
|
H, W, T, C, F, options = ( |
|
version_dict["H"], |
|
version_dict["W"], |
|
version_dict["T"], |
|
version_dict["C"], |
|
version_dict["f"], |
|
version_dict["options"], |
|
) |
|
|
|
if isinstance(image_cond, str): |
|
image_cond = {"img": [image_cond]} |
|
imgs_clip, imgs, img_size = [], [], None |
|
for i, (img, K) in enumerate(zip(image_cond["img"], camera_cond["K"])): |
|
if isinstance(img, str) or img is None: |
|
img, K = load_img_and_K(img or img_size, None, K=K, device="cpu") |
|
img_size = img.shape[-2:] |
|
if options.get("L_short", -1) == -1: |
|
img, K = transform_img_and_K( |
|
img, |
|
(W, H), |
|
K=K[None], |
|
mode=( |
|
options.get("transform_input", "crop") |
|
if i in image_cond["input_indices"] |
|
else options.get("transform_target", "crop") |
|
), |
|
scale=( |
|
1.0 |
|
if i in image_cond["input_indices"] |
|
else options.get("transform_scale", 1.0) |
|
), |
|
) |
|
else: |
|
downsample = 3 |
|
assert options["L_short"] % F * 2**downsample == 0, ( |
|
"Short side of the image should be divisible by " |
|
f"F*2**{downsample}={F * 2**downsample}." |
|
) |
|
img, K = transform_img_and_K( |
|
img, |
|
options["L_short"], |
|
K=K[None], |
|
size_stride=F * 2**downsample, |
|
mode=( |
|
options.get("transform_input", "crop") |
|
if i in image_cond["input_indices"] |
|
else options.get("transform_target", "crop") |
|
), |
|
scale=( |
|
1.0 |
|
if i in image_cond["input_indices"] |
|
else options.get("transform_scale", 1.0) |
|
), |
|
) |
|
version_dict["W"] = W = img.shape[-1] |
|
version_dict["H"] = H = img.shape[-2] |
|
K = K[0] |
|
K[0] /= W |
|
K[1] /= H |
|
camera_cond["K"][i] = K |
|
img_clip = img |
|
elif isinstance(img, np.ndarray): |
|
img_size = torch.Size(img.shape[:2]) |
|
img = torch.as_tensor(img).permute(2, 0, 1) |
|
img = img.unsqueeze(0) |
|
img = img / 255.0 * 2.0 - 1.0 |
|
if not gradio: |
|
img, K = transform_img_and_K(img, (W, H), K=K[None]) |
|
assert K is not None |
|
K = K[0] |
|
K[0] /= W |
|
K[1] /= H |
|
camera_cond["K"][i] = K |
|
img_clip = img |
|
else: |
|
assert ( |
|
False |
|
), f"Variable `img` got {type(img)} type which is not supported!!!" |
|
imgs_clip.append(img_clip) |
|
imgs.append(img) |
|
imgs_clip = torch.cat(imgs_clip, dim=0) |
|
imgs = torch.cat(imgs, dim=0) |
|
|
|
if traj_prior_Ks is not None: |
|
assert img_size is not None |
|
for i, prior_k in enumerate(traj_prior_Ks): |
|
img, prior_k = load_img_and_K(img_size, None, K=prior_k, device="cpu") |
|
img, prior_k = transform_img_and_K( |
|
img, |
|
(W, H), |
|
K=prior_k[None], |
|
mode=options.get( |
|
"transform_target", "crop" |
|
), |
|
scale=options.get( |
|
"transform_scale", 1.0 |
|
), |
|
) |
|
prior_k = prior_k[0] |
|
prior_k[0] /= W |
|
prior_k[1] /= H |
|
traj_prior_Ks[i] = prior_k |
|
|
|
options["num_frames"] = T |
|
discretization = denoiser.discretization |
|
torch.cuda.empty_cache() |
|
|
|
seed_everything(seed) |
|
|
|
|
|
input_indices = image_cond["input_indices"] |
|
input_imgs = imgs[input_indices] |
|
input_imgs_clip = imgs_clip[input_indices] |
|
input_c2ws = camera_cond["c2w"][input_indices] |
|
input_Ks = camera_cond["K"][input_indices] |
|
|
|
test_indices = [i for i in range(len(imgs)) if i not in input_indices] |
|
test_imgs = imgs[test_indices] |
|
test_imgs_clip = imgs_clip[test_indices] |
|
test_c2ws = camera_cond["c2w"][test_indices] |
|
test_Ks = camera_cond["K"][test_indices] |
|
|
|
if options.get("save_input", True): |
|
save_output( |
|
{"/image": input_imgs}, |
|
save_path=os.path.join(save_path, "input"), |
|
video_save_fps=2, |
|
) |
|
|
|
if not use_traj_prior: |
|
chunk_strategy = options.get("chunk_strategy", "gt") |
|
|
|
( |
|
_, |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) = chunk_input_and_test( |
|
T, |
|
input_c2ws, |
|
test_c2ws, |
|
input_indices, |
|
test_indices, |
|
options=options, |
|
task=task, |
|
chunk_strategy=chunk_strategy, |
|
gt_input_inds=list(range(input_c2ws.shape[0])), |
|
) |
|
print( |
|
f"One pass - chunking with `{chunk_strategy}` strategy: total " |
|
f"{len(input_inds_per_chunk)} forward(s) ..." |
|
) |
|
|
|
all_samples = {} |
|
all_test_inds = [] |
|
for i, ( |
|
chunk_input_inds, |
|
chunk_input_sels, |
|
chunk_test_inds, |
|
chunk_test_sels, |
|
) in tqdm( |
|
enumerate( |
|
zip( |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) |
|
), |
|
total=len(input_inds_per_chunk), |
|
leave=False, |
|
): |
|
( |
|
curr_input_sels, |
|
curr_test_sels, |
|
curr_input_maps, |
|
curr_test_maps, |
|
) = pad_indices( |
|
chunk_input_sels, |
|
chunk_test_sels, |
|
T=T, |
|
padding_mode=options.get("t_padding_mode", "last"), |
|
) |
|
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ |
|
assemble( |
|
input=x[chunk_input_inds], |
|
test=y[chunk_test_inds], |
|
input_maps=curr_input_maps, |
|
test_maps=curr_test_maps, |
|
) |
|
for x, y in zip( |
|
[ |
|
torch.cat( |
|
[ |
|
input_imgs, |
|
get_k_from_dict(all_samples, "samples-rgb").to( |
|
input_imgs.device |
|
), |
|
], |
|
dim=0, |
|
), |
|
torch.cat( |
|
[ |
|
input_imgs_clip, |
|
get_k_from_dict(all_samples, "samples-rgb").to( |
|
input_imgs.device |
|
), |
|
], |
|
dim=0, |
|
), |
|
torch.cat([input_c2ws, test_c2ws[all_test_inds]], dim=0), |
|
torch.cat([input_Ks, test_Ks[all_test_inds]], dim=0), |
|
], |
|
[test_imgs, test_imgs_clip, test_c2ws, test_Ks], |
|
) |
|
] |
|
value_dict = get_value_dict( |
|
curr_imgs.to("cuda"), |
|
curr_imgs_clip.to("cuda"), |
|
curr_input_sels |
|
+ [ |
|
sel |
|
for (ind, sel) in zip( |
|
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], |
|
curr_test_sels, |
|
) |
|
if test_indices[ind] in image_cond["input_indices"] |
|
], |
|
curr_c2ws, |
|
curr_Ks, |
|
curr_input_sels |
|
+ [ |
|
sel |
|
for (ind, sel) in zip( |
|
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], |
|
curr_test_sels, |
|
) |
|
if test_indices[ind] in camera_cond["input_indices"] |
|
], |
|
all_c2ws=camera_cond["c2w"], |
|
) |
|
samplers = create_samplers( |
|
options["guider_types"], |
|
discretization, |
|
[len(curr_imgs)], |
|
options["num_steps"], |
|
options["cfg_min"], |
|
abort_event=abort_event, |
|
) |
|
assert len(samplers) == 1 |
|
samples = do_sample( |
|
model, |
|
ae, |
|
conditioner, |
|
denoiser, |
|
samplers[0], |
|
value_dict, |
|
H, |
|
W, |
|
C, |
|
F, |
|
T=len(curr_imgs), |
|
cfg=( |
|
options["cfg"][0] |
|
if isinstance(options["cfg"], (list, tuple)) |
|
else options["cfg"] |
|
), |
|
**{k: options[k] for k in options if k not in ["cfg", "T"]}, |
|
) |
|
samples = decode_output( |
|
samples, len(curr_imgs), chunk_test_sels |
|
) |
|
if options.get("save_first_pass", False): |
|
save_output( |
|
replace_or_include_input_for_dict( |
|
samples, |
|
chunk_test_sels, |
|
curr_imgs, |
|
curr_c2ws, |
|
curr_Ks, |
|
), |
|
save_path=os.path.join(save_path, "first-pass", f"forward_{i}"), |
|
video_save_fps=2, |
|
) |
|
extend_dict(all_samples, samples) |
|
all_test_inds.extend(chunk_test_inds) |
|
else: |
|
assert traj_prior_c2ws is not None, ( |
|
"`traj_prior_c2ws` should be set when using 2-pass sampling. One " |
|
"potential reason is that the amount of input frames is larger than " |
|
"T. Set `num_prior_frames` manually to overwrite the infered stats." |
|
) |
|
traj_prior_c2ws = torch.as_tensor( |
|
traj_prior_c2ws, |
|
device=input_c2ws.device, |
|
dtype=input_c2ws.dtype, |
|
) |
|
|
|
if traj_prior_Ks is None: |
|
traj_prior_Ks = test_Ks[:1].repeat_interleave( |
|
traj_prior_c2ws.shape[0], dim=0 |
|
) |
|
|
|
traj_prior_imgs = imgs.new_zeros(traj_prior_c2ws.shape[0], *imgs.shape[1:]) |
|
traj_prior_imgs_clip = imgs_clip.new_zeros( |
|
traj_prior_c2ws.shape[0], *imgs_clip.shape[1:] |
|
) |
|
|
|
|
|
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T |
|
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T |
|
chunk_strategy_first_pass = options.get( |
|
"chunk_strategy_first_pass", "gt-nearest" |
|
) |
|
( |
|
_, |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
prior_inds_per_chunk, |
|
prior_sels_per_chunk, |
|
) = chunk_input_and_test( |
|
T_first_pass, |
|
input_c2ws, |
|
traj_prior_c2ws, |
|
input_indices, |
|
image_cond["prior_indices"], |
|
options=options, |
|
task=task, |
|
chunk_strategy=chunk_strategy_first_pass, |
|
gt_input_inds=list(range(input_c2ws.shape[0])), |
|
) |
|
print( |
|
f"Two passes (first) - chunking with `{chunk_strategy_first_pass}` strategy: total " |
|
f"{len(input_inds_per_chunk)} forward(s) ..." |
|
) |
|
|
|
all_samples = {} |
|
all_prior_inds = [] |
|
for i, ( |
|
chunk_input_inds, |
|
chunk_input_sels, |
|
chunk_prior_inds, |
|
chunk_prior_sels, |
|
) in tqdm( |
|
enumerate( |
|
zip( |
|
input_inds_per_chunk, |
|
input_sels_per_chunk, |
|
prior_inds_per_chunk, |
|
prior_sels_per_chunk, |
|
) |
|
), |
|
total=len(input_inds_per_chunk), |
|
leave=False, |
|
): |
|
( |
|
curr_input_sels, |
|
curr_prior_sels, |
|
curr_input_maps, |
|
curr_prior_maps, |
|
) = pad_indices( |
|
chunk_input_sels, |
|
chunk_prior_sels, |
|
T=T_first_pass, |
|
padding_mode=options.get("t_padding_mode", "last"), |
|
) |
|
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ |
|
assemble( |
|
input=x[chunk_input_inds], |
|
test=y[chunk_prior_inds], |
|
input_maps=curr_input_maps, |
|
test_maps=curr_prior_maps, |
|
) |
|
for x, y in zip( |
|
[ |
|
torch.cat( |
|
[ |
|
input_imgs, |
|
get_k_from_dict(all_samples, "samples-rgb").to( |
|
input_imgs.device |
|
), |
|
], |
|
dim=0, |
|
), |
|
torch.cat( |
|
[ |
|
input_imgs_clip, |
|
get_k_from_dict(all_samples, "samples-rgb").to( |
|
input_imgs.device |
|
), |
|
], |
|
dim=0, |
|
), |
|
torch.cat([input_c2ws, traj_prior_c2ws[all_prior_inds]], dim=0), |
|
torch.cat([input_Ks, traj_prior_Ks[all_prior_inds]], dim=0), |
|
], |
|
[ |
|
traj_prior_imgs, |
|
traj_prior_imgs_clip, |
|
traj_prior_c2ws, |
|
traj_prior_Ks, |
|
], |
|
) |
|
] |
|
value_dict = get_value_dict( |
|
curr_imgs.to("cuda"), |
|
curr_imgs_clip.to("cuda"), |
|
curr_input_sels, |
|
curr_c2ws, |
|
curr_Ks, |
|
list(range(T_first_pass)), |
|
all_c2ws=camera_cond["c2w"], |
|
) |
|
samplers = create_samplers( |
|
options["guider_types"], |
|
discretization, |
|
[T_first_pass, T_second_pass], |
|
options["num_steps"], |
|
options["cfg_min"], |
|
abort_event=abort_event, |
|
) |
|
samples = do_sample( |
|
model, |
|
ae, |
|
conditioner, |
|
denoiser, |
|
( |
|
samplers[1] |
|
if len(samplers) > 1 |
|
and options.get("ltr_first_pass", False) |
|
and chunk_strategy_first_pass != "gt" |
|
and i > 0 |
|
else samplers[0] |
|
), |
|
value_dict, |
|
H, |
|
W, |
|
C, |
|
F, |
|
cfg=( |
|
options["cfg"][0] |
|
if isinstance(options["cfg"], (list, tuple)) |
|
else options["cfg"] |
|
), |
|
T=T_first_pass, |
|
global_pbar=first_pass_pbar, |
|
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, |
|
) |
|
if samples is None: |
|
return |
|
samples = decode_output( |
|
samples, T_first_pass, chunk_prior_sels |
|
) |
|
extend_dict(all_samples, samples) |
|
all_prior_inds.extend(chunk_prior_inds) |
|
|
|
if options.get("save_first_pass", True): |
|
save_output( |
|
all_samples, |
|
save_path=os.path.join(save_path, "first-pass"), |
|
video_save_fps=5, |
|
) |
|
video_path_0 = os.path.join(save_path, "first-pass", "samples-rgb.mp4") |
|
yield video_path_0 |
|
|
|
|
|
prior_indices = image_cond["prior_indices"] |
|
assert ( |
|
prior_indices is not None |
|
), "`prior_frame_indices` needs to be set if using 2-pass sampling." |
|
prior_argsort = np.argsort(input_indices + prior_indices).tolist() |
|
prior_indices = np.array(input_indices + prior_indices)[prior_argsort].tolist() |
|
gt_input_inds = [prior_argsort.index(i) for i in range(input_c2ws.shape[0])] |
|
|
|
traj_prior_imgs = torch.cat( |
|
[input_imgs, get_k_from_dict(all_samples, "samples-rgb")], dim=0 |
|
)[prior_argsort] |
|
traj_prior_imgs_clip = torch.cat( |
|
[ |
|
input_imgs_clip, |
|
get_k_from_dict(all_samples, "samples-rgb"), |
|
], |
|
dim=0, |
|
)[prior_argsort] |
|
traj_prior_c2ws = torch.cat([input_c2ws, traj_prior_c2ws], dim=0)[prior_argsort] |
|
traj_prior_Ks = torch.cat([input_Ks, traj_prior_Ks], dim=0)[prior_argsort] |
|
|
|
update_kv_for_dict(all_samples, "samples-rgb", traj_prior_imgs) |
|
update_kv_for_dict(all_samples, "samples-c2ws", traj_prior_c2ws) |
|
update_kv_for_dict(all_samples, "samples-intrinsics", traj_prior_Ks) |
|
|
|
chunk_strategy = options.get("chunk_strategy", "nearest") |
|
( |
|
_, |
|
prior_inds_per_chunk, |
|
prior_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) = chunk_input_and_test( |
|
T_second_pass, |
|
traj_prior_c2ws, |
|
test_c2ws, |
|
prior_indices, |
|
test_indices, |
|
options=options, |
|
task=task, |
|
chunk_strategy=chunk_strategy, |
|
gt_input_inds=gt_input_inds, |
|
) |
|
print( |
|
f"Two passes (second) - chunking with `{chunk_strategy}` strategy: total " |
|
f"{len(prior_inds_per_chunk)} forward(s) ..." |
|
) |
|
|
|
all_samples = {} |
|
all_test_inds = [] |
|
for i, ( |
|
chunk_prior_inds, |
|
chunk_prior_sels, |
|
chunk_test_inds, |
|
chunk_test_sels, |
|
) in tqdm( |
|
enumerate( |
|
zip( |
|
prior_inds_per_chunk, |
|
prior_sels_per_chunk, |
|
test_inds_per_chunk, |
|
test_sels_per_chunk, |
|
) |
|
), |
|
total=len(prior_inds_per_chunk), |
|
leave=False, |
|
): |
|
( |
|
curr_prior_sels, |
|
curr_test_sels, |
|
curr_prior_maps, |
|
curr_test_maps, |
|
) = pad_indices( |
|
chunk_prior_sels, |
|
chunk_test_sels, |
|
T=T_second_pass, |
|
padding_mode="last", |
|
) |
|
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ |
|
assemble( |
|
input=x[chunk_prior_inds], |
|
test=y[chunk_test_inds], |
|
input_maps=curr_prior_maps, |
|
test_maps=curr_test_maps, |
|
) |
|
for x, y in zip( |
|
[ |
|
traj_prior_imgs, |
|
traj_prior_imgs_clip, |
|
traj_prior_c2ws, |
|
traj_prior_Ks, |
|
], |
|
[test_imgs, test_imgs_clip, test_c2ws, test_Ks], |
|
) |
|
] |
|
value_dict = get_value_dict( |
|
curr_imgs.to("cuda"), |
|
curr_imgs_clip.to("cuda"), |
|
curr_prior_sels, |
|
curr_c2ws, |
|
curr_Ks, |
|
list(range(T_second_pass)), |
|
all_c2ws=camera_cond["c2w"], |
|
) |
|
samples = do_sample( |
|
model, |
|
ae, |
|
conditioner, |
|
denoiser, |
|
samplers[1] if len(samplers) > 1 else samplers[0], |
|
value_dict, |
|
H, |
|
W, |
|
C, |
|
F, |
|
T=T_second_pass, |
|
cfg=( |
|
options["cfg"][1] |
|
if isinstance(options["cfg"], (list, tuple)) |
|
and len(options["cfg"]) > 1 |
|
else options["cfg"] |
|
), |
|
global_pbar=second_pass_pbar, |
|
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, |
|
) |
|
if samples is None: |
|
return |
|
samples = decode_output( |
|
samples, T_second_pass, chunk_test_sels |
|
) |
|
if options.get("save_second_pass", False): |
|
save_output( |
|
replace_or_include_input_for_dict( |
|
samples, |
|
chunk_test_sels, |
|
curr_imgs, |
|
curr_c2ws, |
|
curr_Ks, |
|
), |
|
save_path=os.path.join(save_path, "second-pass", f"forward_{i}"), |
|
video_save_fps=2, |
|
) |
|
extend_dict(all_samples, samples) |
|
all_test_inds.extend(chunk_test_inds) |
|
all_samples = { |
|
key: value[np.argsort(all_test_inds)] for key, value in all_samples.items() |
|
} |
|
save_output( |
|
replace_or_include_input_for_dict( |
|
all_samples, |
|
test_indices, |
|
imgs.clone(), |
|
camera_cond["c2w"].clone(), |
|
camera_cond["K"].clone(), |
|
) |
|
if options.get("replace_or_include_input", False) |
|
else all_samples, |
|
save_path=save_path, |
|
video_save_fps=options.get("video_save_fps", 2), |
|
) |
|
video_path_1 = os.path.join(save_path, "samples-rgb.mp4") |
|
yield video_path_1 |
|
|