MESA / app.py
mikonvergence
minor update (random seed etc)
f328707
import gradio as gr
from src.utils import *
if __name__ == '__main__':
theme = gr.themes.Soft(primary_hue="emerald", secondary_hue="stone", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial'])
with gr.Blocks(theme=theme) as demo:
with gr.Column(elem_classes="header"):
gr.Markdown("# 🏔 MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data")
gr.Markdown("### Paul Borne–Pons, Mikolaj Czerkawski, Rosalie Martin, Romain Rouffet")
gr.Markdown('[[Website](https://paulbornep.github.io/mesa-terrain/)] [[GitHub](https://github.com/PaulBorneP/MESA)] [[Model](https://huggingface.co./NewtNewt/MESA)] [[Dataset](https://huggingface.co./datasets/Major-TOM/Core-DEM)]')
with gr.Column(elem_classes="abstract"):
gr.Markdown("MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.") # Replace with your abstract text
gr.Markdown("This is a test version of the demo app. Please be aware that MESA supports primarily complex, mountainous terrains as opposed to flat land")
gr.Markdown("> ⚠️ **The generated image is quite large, so for the larger resolution (768) it might take a while to load the surface**")
with gr.Row():
prompt_input = gr.Textbox(lines=2, placeholder="Enter a terrain description...")
with gr.Tabs() as output_tabs:
with gr.Tab("2D View (Fast)"):
generate_2d_button = gr.Button("Generate Terrain", variant="primary")
with gr.Row():
rgb_output = gr.Image(label="RGB Image")
elevation_output = gr.Image(label="Elevation Map")
with gr.Tab("3D View (Slow)"):
generate_3d_button = gr.Button("Generate Terrain", variant="primary")
model_3d_output = gr.Model3D(
camera_position=[90, 135, 512],
clear_color=[0.0, 0.0, 0.0, 0.0],
#display_mode = 'point_cloud'
)
with gr.Accordion("Advanced Options", open=False) as advanced_options:
num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps")
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale")
seed_number = gr.Number(value=6378, label="Seed")
random_seed = gr.Checkbox(value=True, label="Random Seed")
crop_size_slider = gr.Slider(minimum=128, maximum=768, step=64, value=768, label="(3D Only) Crop Size")
vertex_count_slider = gr.Slider(minimum=0, maximum=10000, step=0, value=0, label="(3D Only) Vertex Count (Default: 0 - no reduction)")
prefix_textbox = gr.Textbox(label="Prompt Prefix", value="A Sentinel-2 image of ")
generate_2d_button.click(
fn=generate_2d_view_output,
inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, random_seed, prefix_textbox],
outputs=[rgb_output, elevation_output],
)
generate_3d_button.click(
fn=generate_3d_view_output,
inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, random_seed, crop_size_slider, vertex_count_slider, prefix_textbox],
outputs=[rgb_output, elevation_output, model_3d_output],
)
demo.queue().launch()