Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,014 Bytes
886e812 4d22630 a1c8d5a 886e812 d787e0c e8d0048 886e812 e8d0048 a1c8d5a 40c3bb1 a1c8d5a b3851ae 886e812 b3851ae 40c3bb1 b3851ae 886e812 b3851ae 886e812 b3851ae 886e812 b3851ae 40c3bb1 b3851ae 886e812 e350327 886e812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import torch
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import ml_collections
from torchvision.utils import save_image, make_grid
import torch.nn.functional as F
import einops
import random
import torchvision.transforms as standard_transforms
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="thu-ml/unidiffuser-v1", filename="autoencoder_kl.pth", local_dir='./models')
hf_hub_download(repo_id="mespinosami/COP-GEN-Beta", filename="nnet_ema_114000.pth", local_dir='./models')
import sys
sys.path.append('./src/COP-GEN-Beta')
import libs
from dpm_solver_pp import DPM_Solver, NoiseScheduleVP
from sample_n_triffuser import set_seed, stable_diffusion_beta_schedule, unpreprocess
import utils
from diffusers import AutoencoderKL
from .Triffuser import *
# Function to load model
def load_model(device='cuda'):
nnet = Triffuser(num_modalities=4)
checkpoint = torch.load('models/nnet_ema_114000.pth', map_location='cuda')
nnet.load_state_dict(checkpoint)
nnet.to(device)
nnet.eval()
autoencoder = libs.autoencoder.get_model(pretrained_path = "models/autoencoder_kl.pth")
autoencoder.to(device)
autoencoder.eval()
return nnet, autoencoder
print('Loading COP-GEN-Beta model...')
nnet, autoencoder = load_model()
to_PIL = standard_transforms.ToPILImage()
print('[DONE]')
def get_config(generate_modalities, condition_modalities, seed, num_inference_steps=50):
config = ml_collections.ConfigDict()
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
config.seed = seed
config.n_samples = 1
config.z_shape = (4, 32, 32) # Shape of the latent vectors
config.sample = {
'sample_steps': num_inference_steps,
'algorithm': "dpm_solver",
}
# Model config
config.num_modalities = 4 # 4 modalities: DEM, S1RTC, S2L1C, S2L2A
config.modalities = ['dem', 's1_rtc', 's2_l1c', 's2_l2a']
# Network config
config.nnet = {
'name': 'triffuser_multi_post_ln',
'img_size': 32,
'in_chans': 4,
'patch_size': 2,
'embed_dim': 1024,
'depth': 20,
'num_heads': 16,
'mlp_ratio': 4,
'qkv_bias': False,
'pos_drop_rate': 0.,
'drop_rate': 0.,
'attn_drop_rate': 0.,
'mlp_time_embed': False,
'num_modalities': 4,
'use_checkpoint': True,
}
# Parse generate and condition modalities
config.generate_modalities = generate_modalities
config.generate_modalities = sorted(config.generate_modalities, key=lambda x: config.modalities.index(x))
config.condition_modalities = condition_modalities if condition_modalities else []
config.condition_modalities = sorted(config.condition_modalities, key=lambda x: config.modalities.index(x))
config.generate_modalities_mask = [mod in config.generate_modalities for mod in config.modalities]
config.condition_modalities_mask = [mod in config.condition_modalities for mod in config.modalities]
# Validate modalities
valid_modalities = {'s2_l1c', 's2_l2a', 's1_rtc', 'dem'}
for mod in config.generate_modalities + config.condition_modalities:
if mod not in valid_modalities:
raise ValueError(f"Invalid modality: {mod}. Must be one of {valid_modalities}")
# Check that generate and condition modalities don't overlap
if set(config.generate_modalities) & set(config.condition_modalities):
raise ValueError("Generate and condition modalities must be different")
# Default data paths
config.nnet_path = 'models/nnet_ema_114000.pth'
#config.autoencoder = {"pretrained_path": "assets/stable-diffusion/autoencoder_kl_ema.pth"}
return config
# Function to prepare image for inference
def prepare_images(images):
transforms = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(mean=(0.5,), std=(0.5,))
])
img_tensors = []
for img in images:
img_tensors.append(transforms(img)) # Add batch dimension
return img_tensors
def run_inference(config, nnet, autoencoder, img_tensors):
set_seed(config.seed)
img_tensors = [tensor.to(config.device) for tensor in img_tensors]
# Create a context tensor for all modalities
img_contexts = torch.randn(config.num_modalities, 1, 2 * config.z_shape[0],
config.z_shape[1], config.z_shape[2], device=config.device)
with torch.no_grad():
# Encode the input images with autoencoder
z_conds = [autoencoder.encode_moments(tensor.unsqueeze(0)) for tensor in img_tensors]
# Create mapping of conditional modalities indices to the encoded inputs
cond_indices = [i for i, is_cond in enumerate(config.condition_modalities_mask) if is_cond]
# Check if we have the right number of inputs
if len(cond_indices) != len(z_conds):
raise ValueError(f"Number of conditioning modalities ({len(cond_indices)}) must match number of input images ({len(z_conds)})")
# Assign each encoded input to the corresponding modality
for i, z_cond in zip(cond_indices, z_conds):
img_contexts[i] = z_cond
# Sample values from the distribution (mean and variance)
z_imgs = torch.stack([autoencoder.sample(img_context) for img_context in img_contexts])
# Generate initial noise for the modalities being generated
_z_init = torch.randn(len(config.generate_modalities), 1, *z_imgs[0].shape[1:], device=config.device)
def combine_joint(z_list):
"""Combine individual modality tensors into a single concatenated tensor"""
return torch.concat([einops.rearrange(z_i, 'B C H W -> B (C H W)') for z_i in z_list], dim=-1)
def split_joint(x, z_imgs, config):
"""
Split the combined tensor back into individual modality tensors
and arrange them according to the full set of modalities
"""
C, H, W = config.z_shape
z_dim = C * H * W
z_generated = x.split([z_dim] * len(config.generate_modalities), dim=1)
z_generated = {modality: einops.rearrange(z_i, 'B (C H W) -> B C H W', C=C, H=H, W=W)
for z_i, modality in zip(z_generated, config.generate_modalities)}
z = []
for i, modality in enumerate(config.modalities):
if modality in config.generate_modalities: # Modalities that are being denoised
z.append(z_generated[modality])
elif modality in config.condition_modalities: # Modalities that are being conditioned on
z.append(z_imgs[i])
else: # Modalities that are ignored
z.append(torch.randn(x.shape[0], C, H, W, device=config.device))
return z
_x_init = combine_joint(_z_init) # Initial tensor for the modalities being generated
_betas = stable_diffusion_beta_schedule()
N = len(_betas)
def model_fn(x, t_continuous):
t = t_continuous * N
# Create timesteps for each modality based on the generate mask
timesteps = [t if mask else torch.zeros_like(t) for mask in config.generate_modalities_mask]
# Split the input into a list of tensors for all modalities
z = split_joint(x, z_imgs, config)
# Call the network with the right format
z_out = nnet(z, t_imgs=timesteps)
# Select only the generated modalities for the denoising process
z_out_generated = [z_out[i]
for i, modality in enumerate(config.modalities)
if modality in config.generate_modalities]
# Combine the outputs back into a single tensor
return combine_joint(z_out_generated)
# Sample using the DPM-Solver with exact parameters from sample_n_triffuser.py
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=torch.tensor(_betas, device=config.device).float())
dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True, thresholding=False)
# Generate samples
with torch.no_grad():
with torch.autocast(device_type=config.device):
x = dpm_solver.sample(_x_init, steps=config.sample.sample_steps, eps=1. / N, T=1.)
# Split the result back into individual modality tensors
_zs = split_joint(x, z_imgs, config)
# Replace conditional modalities with the original images
for i, mask in enumerate(config.condition_modalities_mask):
if mask:
_zs[i] = z_imgs[i]
# Decode and unprocess the generated samples
generated_samples = []
for i, modality in enumerate(config.modalities):
if modality in config.generate_modalities:
sample = autoencoder.decode(_zs[i]) # Decode the latent representation
sample = unpreprocess(sample) # Unpreprocess to [0, 1] range
generated_samples.append((modality, sample))
return generated_samples
def custom_inference(images, generate_modalities, condition_modalities, num_inference_steps, seed=None):
"""
Run custom inference with user-specified parameters
Args:
generate_modalities: List of modalities to generate
condition_modalities: List of modalities to condition on
image_paths: Path to conditioning image or list of paths (ordered to match condition_modalities)
Returns:
Dict mapping modality names to generated tensors
"""
if seed is None:
seed = random.randint(0, int(1e8))
img_tensors = prepare_images(images)
config = get_config(generate_modalities, condition_modalities, seed=seed)
config.sample.sample_steps = num_inference_steps
generated_samples = run_inference(config, nnet, autoencoder, img_tensors)
results = {modality: tensor for modality, tensor in generated_samples}
return results
@spaces.GPU
def generate_output(s2l1c_input, s2l2a_input, s1rtc_input, dem_input, num_inference_steps_slider, seed_number, ignore_seed):
seed = seed_number if not ignore_seed else None
s2l2a_active = s2l2a_input is not None
s2l1c_active = s2l1c_input is not None
s1rtc_active = s1rtc_input is not None
dem_active = dem_input is not None
if s2l2a_active and s2l1c_active and s1rtc_active and dem_active:
gr.Warning("You need to remove some of the inputs that you would like to generate. If all modalities are known, there is nothing to generate.")
return s2l1c_input, s2l2a_input, s1rtc_input, dem_input
# Instead of collecting in UI order, create ordered dictionaries
input_images = {}
if s2l1c_active:
input_images['s2_l1c'] = s2l1c_input
if s2l2a_active:
input_images['s2_l2a'] = s2l2a_input
if s1rtc_active:
input_images['s1_rtc'] = s1rtc_input
if dem_active:
input_images['dem'] = dem_input
condition_modalities = list(input_images.keys())
# Sort modalities and collect images in the same order
sorted_modalities = sorted(condition_modalities, key=lambda x: ['dem', 's1_rtc', 's2_l1c', 's2_l2a'].index(x))
sorted_images = [input_images[mod] for mod in sorted_modalities]
imgs_out = custom_inference(
images=sorted_images,
generate_modalities=[el for el in ['s2_l1c', 's2_l2a', 's1_rtc', 'dem'] if el not in condition_modalities],
condition_modalities=sorted_modalities,
num_inference_steps=num_inference_steps_slider,
seed=seed
)
output = []
# Collect outputs
if s2l1c_active:
output.append(s2l1c_input)
else:
output.append(to_PIL(imgs_out['s2_l1c'][0]))
if s2l2a_active:
output.append(s2l2a_input)
else:
output.append(to_PIL(imgs_out['s2_l2a'][0]))
if s1rtc_active:
output.append(s1rtc_input)
else:
output.append(to_PIL(imgs_out['s1_rtc'][0]))
if dem_active:
output.append(dem_input)
else:
output.append(to_PIL(imgs_out['dem'][0]))
return output
|