Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,30 @@
|
|
1 |
import os
|
2 |
import io
|
3 |
-
|
|
|
|
|
4 |
from werkzeug.utils import secure_filename
|
5 |
from PyPDF2 import PdfReader
|
6 |
from docx import Document
|
7 |
from pptx import Presentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Allowed file extensions
|
12 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "txt"}
|
@@ -35,46 +53,114 @@ def summarize():
|
|
35 |
file_content = file.read()
|
36 |
|
37 |
# Process file based on type
|
38 |
-
|
39 |
file_ext = filename.rsplit(".", 1)[1].lower()
|
40 |
|
41 |
try:
|
42 |
if file_ext == "pdf":
|
43 |
-
|
44 |
elif file_ext == "docx":
|
45 |
-
|
46 |
elif file_ext == "pptx":
|
47 |
-
|
48 |
elif file_ext == "txt":
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
return jsonify({"error": f"Error processing file: {str(e)}"}), 500
|
54 |
|
55 |
-
#
|
56 |
-
def
|
57 |
reader = PdfReader(io.BytesIO(file_content))
|
58 |
-
text = "
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
def
|
62 |
doc = Document(io.BytesIO(file_content))
|
63 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
64 |
-
return text
|
65 |
|
66 |
-
def
|
67 |
ppt = Presentation(io.BytesIO(file_content))
|
68 |
text = []
|
69 |
for slide in ppt.slides:
|
70 |
for shape in slide.shapes:
|
71 |
-
if hasattr(shape, "text"):
|
72 |
text.append(shape.text)
|
73 |
-
return "\n".join(text)
|
74 |
|
75 |
-
def
|
76 |
-
text = file_content.decode("utf-8")
|
77 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
if __name__ == "__main__":
|
80 |
app.run(host="0.0.0.0", port=7860, debug=True)
|
|
|
1 |
import os
|
2 |
import io
|
3 |
+
import re
|
4 |
+
from flask import Flask, request, jsonify
|
5 |
+
from flask_cors import CORS
|
6 |
from werkzeug.utils import secure_filename
|
7 |
from PyPDF2 import PdfReader
|
8 |
from docx import Document
|
9 |
from pptx import Presentation
|
10 |
+
import nltk
|
11 |
+
from nltk.corpus import stopwords
|
12 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
13 |
+
from nltk.probability import FreqDist
|
14 |
+
from heapq import nlargest
|
15 |
+
from collections import defaultdict
|
16 |
+
import string
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
+
CORS(app) # Enable CORS for all routes
|
20 |
+
|
21 |
+
# Download necessary NLTK data
|
22 |
+
try:
|
23 |
+
nltk.data.find('tokenizers/punkt')
|
24 |
+
nltk.data.find('corpora/stopwords')
|
25 |
+
except LookupError:
|
26 |
+
nltk.download('punkt')
|
27 |
+
nltk.download('stopwords')
|
28 |
|
29 |
# Allowed file extensions
|
30 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "txt"}
|
|
|
53 |
file_content = file.read()
|
54 |
|
55 |
# Process file based on type
|
56 |
+
text = None
|
57 |
file_ext = filename.rsplit(".", 1)[1].lower()
|
58 |
|
59 |
try:
|
60 |
if file_ext == "pdf":
|
61 |
+
text = extract_text_from_pdf(file_content)
|
62 |
elif file_ext == "docx":
|
63 |
+
text = extract_text_from_docx(file_content)
|
64 |
elif file_ext == "pptx":
|
65 |
+
text = extract_text_from_pptx(file_content)
|
66 |
elif file_ext == "txt":
|
67 |
+
text = extract_text_from_txt(file_content)
|
68 |
+
|
69 |
+
# Generate a summary of the text
|
70 |
+
summary = generate_summary(text)
|
71 |
+
|
72 |
+
# Include metadata
|
73 |
+
word_count = len(text.split())
|
74 |
+
|
75 |
+
return jsonify({
|
76 |
+
"filename": filename,
|
77 |
+
"summary": summary,
|
78 |
+
"original_word_count": word_count,
|
79 |
+
"summary_word_count": len(summary.split())
|
80 |
+
})
|
81 |
except Exception as e:
|
82 |
return jsonify({"error": f"Error processing file: {str(e)}"}), 500
|
83 |
|
84 |
+
# Improved text extraction functions
|
85 |
+
def extract_text_from_pdf(file_content):
|
86 |
reader = PdfReader(io.BytesIO(file_content))
|
87 |
+
text = ""
|
88 |
+
for page in reader.pages:
|
89 |
+
page_text = page.extract_text()
|
90 |
+
if page_text:
|
91 |
+
text += page_text + "\n\n"
|
92 |
+
return clean_text(text)
|
93 |
|
94 |
+
def extract_text_from_docx(file_content):
|
95 |
doc = Document(io.BytesIO(file_content))
|
96 |
+
text = "\n".join([para.text for para in doc.paragraphs if para.text.strip()])
|
97 |
+
return clean_text(text)
|
98 |
|
99 |
+
def extract_text_from_pptx(file_content):
|
100 |
ppt = Presentation(io.BytesIO(file_content))
|
101 |
text = []
|
102 |
for slide in ppt.slides:
|
103 |
for shape in slide.shapes:
|
104 |
+
if hasattr(shape, "text") and shape.text.strip():
|
105 |
text.append(shape.text)
|
106 |
+
return clean_text("\n".join(text))
|
107 |
|
108 |
+
def extract_text_from_txt(file_content):
|
109 |
+
text = file_content.decode("utf-8", errors="ignore")
|
110 |
+
return clean_text(text)
|
111 |
+
|
112 |
+
def clean_text(text):
|
113 |
+
# Remove excess whitespace
|
114 |
+
text = re.sub(r'\s+', ' ', text)
|
115 |
+
# Remove special characters but keep sentence punctuation
|
116 |
+
text = re.sub(r'[^\w\s\.\,\!\?\:\;]', '', text)
|
117 |
+
return text.strip()
|
118 |
+
|
119 |
+
def generate_summary(text, sentence_count=5):
|
120 |
+
# If text is very short, return it as is
|
121 |
+
if len(text.split()) < 100:
|
122 |
+
return text
|
123 |
+
|
124 |
+
# Tokenize the text into sentences
|
125 |
+
sentences = sent_tokenize(text)
|
126 |
+
|
127 |
+
# If too few sentences, return all
|
128 |
+
if len(sentences) <= sentence_count:
|
129 |
+
return text
|
130 |
+
|
131 |
+
# Remove punctuation and convert to lowercase for processing
|
132 |
+
clean_sentences = [s.translate(str.maketrans('', '', string.punctuation)).lower() for s in sentences]
|
133 |
+
|
134 |
+
# Get stop words
|
135 |
+
stop_words = set(stopwords.words('english'))
|
136 |
+
|
137 |
+
# Calculate word frequencies excluding stop words
|
138 |
+
word_frequencies = defaultdict(int)
|
139 |
+
for sentence in clean_sentences:
|
140 |
+
for word in word_tokenize(sentence):
|
141 |
+
if word not in stop_words:
|
142 |
+
word_frequencies[word] += 1
|
143 |
+
|
144 |
+
# Normalize frequencies
|
145 |
+
max_frequency = max(word_frequencies.values()) if word_frequencies else 1
|
146 |
+
for word in word_frequencies:
|
147 |
+
word_frequencies[word] = word_frequencies[word] / max_frequency
|
148 |
+
|
149 |
+
# Calculate sentence scores based on word frequencies
|
150 |
+
sentence_scores = defaultdict(int)
|
151 |
+
for i, sentence in enumerate(clean_sentences):
|
152 |
+
for word in word_tokenize(sentence):
|
153 |
+
if word in word_frequencies:
|
154 |
+
sentence_scores[i] += word_frequencies[word]
|
155 |
+
|
156 |
+
# Get top sentences
|
157 |
+
top_indices = nlargest(sentence_count, sentence_scores, key=sentence_scores.get)
|
158 |
+
top_indices.sort() # Sort to maintain original order
|
159 |
+
|
160 |
+
# Combine top sentences to form summary
|
161 |
+
summary = ' '.join([sentences[i] for i in top_indices])
|
162 |
+
|
163 |
+
return summary
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
app.run(host="0.0.0.0", port=7860, debug=True)
|