Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,19 @@
|
|
1 |
import os
|
2 |
import io
|
3 |
-
import re
|
4 |
from flask import Flask, request, jsonify
|
5 |
-
from flask_cors import CORS
|
6 |
from werkzeug.utils import secure_filename
|
7 |
from PyPDF2 import PdfReader
|
8 |
from docx import Document
|
9 |
from pptx import Presentation
|
10 |
import nltk
|
11 |
-
import string
|
12 |
from nltk.corpus import stopwords
|
13 |
-
from nltk.tokenize import
|
14 |
-
from nltk.probability import FreqDist
|
15 |
-
from heapq import nlargest
|
16 |
-
from collections import defaultdict
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
-
CORS(app) # Enable CORS for all routes
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
nltk.data.path.append(nltk_data_dir)
|
25 |
-
|
26 |
-
# Ensure NLTK data is available (pre-downloaded)
|
27 |
-
try:
|
28 |
-
stopwords.words('english') # Test if stopwords are accessible
|
29 |
-
except LookupError:
|
30 |
-
print("NLTK data not found. Please ensure 'punkt' and 'stopwords' are pre-downloaded in 'nltk_data'.")
|
31 |
-
# Fallback will be used if this fails
|
32 |
|
33 |
# Allowed file extensions
|
34 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "txt"}
|
@@ -36,6 +21,48 @@ ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "txt"}
|
|
36 |
def allowed_file(filename):
|
37 |
return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@app.route("/", methods=["GET"])
|
40 |
def index():
|
41 |
return "Document Summarizer API is running! Use /summarize endpoint for POST requests."
|
@@ -57,127 +84,47 @@ def summarize():
|
|
57 |
file_content = file.read()
|
58 |
|
59 |
# Process file based on type
|
60 |
-
|
61 |
file_ext = filename.rsplit(".", 1)[1].lower()
|
62 |
|
63 |
try:
|
64 |
if file_ext == "pdf":
|
65 |
-
|
66 |
elif file_ext == "docx":
|
67 |
-
|
68 |
elif file_ext == "pptx":
|
69 |
-
|
70 |
elif file_ext == "txt":
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
try:
|
75 |
-
summary = generate_summary(text)
|
76 |
-
except LookupError as e:
|
77 |
-
print(f"NLTK summarization failed: {e}. Using fallback.")
|
78 |
-
summary = simple_summarize(text)
|
79 |
-
except Exception as e:
|
80 |
-
print(f"Summarization error: {e}")
|
81 |
-
summary = text[:1000] + "..." if len(text) > 1000 else text
|
82 |
-
|
83 |
-
# Include metadata
|
84 |
-
word_count = len(text.split())
|
85 |
-
|
86 |
-
return jsonify({
|
87 |
-
"filename": filename,
|
88 |
-
"summary": summary,
|
89 |
-
"original_word_count": word_count,
|
90 |
-
"summary_word_count": len(summary.split()) if summary else 0
|
91 |
-
})
|
92 |
except Exception as e:
|
93 |
return jsonify({"error": f"Error processing file: {str(e)}"}), 500
|
94 |
|
95 |
-
#
|
96 |
-
def
|
97 |
reader = PdfReader(io.BytesIO(file_content))
|
98 |
-
text = ""
|
99 |
-
|
100 |
-
page_text = page.extract_text()
|
101 |
-
if page_text:
|
102 |
-
text += page_text + "\n\n"
|
103 |
-
return clean_text(text)
|
104 |
|
105 |
-
def
|
106 |
doc = Document(io.BytesIO(file_content))
|
107 |
-
text = "\n".join([para.text for para in doc.paragraphs
|
108 |
-
return
|
109 |
|
110 |
-
def
|
111 |
ppt = Presentation(io.BytesIO(file_content))
|
112 |
text = []
|
113 |
for slide in ppt.slides:
|
114 |
for shape in slide.shapes:
|
115 |
-
if hasattr(shape, "text")
|
116 |
text.append(shape.text)
|
117 |
-
|
118 |
-
|
119 |
-
def extract_text_from_txt(file_content):
|
120 |
-
text = file_content.decode("utf-8", errors="ignore")
|
121 |
-
return clean_text(text)
|
122 |
-
|
123 |
-
def clean_text(text):
|
124 |
-
text = re.sub(r'\s+', ' ', text)
|
125 |
-
text = re.sub(r'[^\w\s\.\,\!\?\:\;]', '', text)
|
126 |
-
return text.strip()
|
127 |
|
128 |
-
def
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
sentences = sent_tokenize(text)
|
133 |
-
if len(sentences) <= sentence_count:
|
134 |
-
return text
|
135 |
-
|
136 |
-
clean_sentences = [s.translate(str.maketrans('', '', string.punctuation)).lower() for s in sentences]
|
137 |
-
stop_words = set(stopwords.words('english'))
|
138 |
-
|
139 |
-
word_frequencies = defaultdict(int)
|
140 |
-
for sentence in clean_sentences:
|
141 |
-
for word in word_tokenize(sentence):
|
142 |
-
if word not in stop_words:
|
143 |
-
word_frequencies[word] += 1
|
144 |
-
|
145 |
-
max_frequency = max(word_frequencies.values()) if word_frequencies else 1
|
146 |
-
for word in word_frequencies:
|
147 |
-
word_frequencies[word] = word_frequencies[word] / max_frequency
|
148 |
-
|
149 |
-
sentence_scores = defaultdict(int)
|
150 |
-
for i, sentence in enumerate(clean_sentences):
|
151 |
-
for word in word_tokenize(sentence):
|
152 |
-
if word in word_frequencies:
|
153 |
-
sentence_scores[i] += word_frequencies[word]
|
154 |
-
|
155 |
-
top_indices = nlargest(sentence_count, sentence_scores, key=sentence_scores.get)
|
156 |
-
top_indices.sort()
|
157 |
-
|
158 |
-
return ' '.join([sentences[i] for i in top_indices])
|
159 |
-
|
160 |
-
def simple_summarize(text, max_chars=1000):
|
161 |
-
paragraphs = text.split('\n\n')
|
162 |
-
base_summary = ' '.join(paragraphs[:3])
|
163 |
-
|
164 |
-
if len(text) <= max_chars:
|
165 |
-
return text
|
166 |
-
|
167 |
-
if len(base_summary) < max_chars:
|
168 |
-
remaining_text = ' '.join(paragraphs[3:])
|
169 |
-
sentences = re.split(r'(?<=[.!?])\s+', remaining_text)
|
170 |
-
for sentence in sentences:
|
171 |
-
if len(base_summary) + len(sentence) + 1 <= max_chars:
|
172 |
-
base_summary += ' ' + sentence
|
173 |
-
else:
|
174 |
-
break
|
175 |
-
|
176 |
-
if len(base_summary) > max_chars:
|
177 |
-
base_summary = base_summary[:max_chars] + "..."
|
178 |
-
|
179 |
-
return base_summary
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
-
|
183 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import io
|
|
|
3 |
from flask import Flask, request, jsonify
|
|
|
4 |
from werkzeug.utils import secure_filename
|
5 |
from PyPDF2 import PdfReader
|
6 |
from docx import Document
|
7 |
from pptx import Presentation
|
8 |
import nltk
|
|
|
9 |
from nltk.corpus import stopwords
|
10 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
|
|
|
|
|
|
11 |
|
12 |
app = Flask(__name__)
|
|
|
13 |
|
14 |
+
# Download NLTK data when the app starts
|
15 |
+
nltk.download('punkt', quiet=True)
|
16 |
+
nltk.download('stopwords', quiet=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Allowed file extensions
|
19 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "txt"}
|
|
|
21 |
def allowed_file(filename):
|
22 |
return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS
|
23 |
|
24 |
+
# Extractive summarization function
|
25 |
+
def extractive_summary(text, num_sentences=5):
|
26 |
+
"""
|
27 |
+
Summarizes the given text by selecting the top N most important sentences.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
text (str): The text to summarize.
|
31 |
+
num_sentences (int): Number of sentences to include in the summary (default: 5).
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
str: The summarized text.
|
35 |
+
"""
|
36 |
+
# Get stop words (e.g., "the", "is") to ignore them
|
37 |
+
stop_words = set(stopwords.words('english'))
|
38 |
+
|
39 |
+
# Tokenize text into words and sentences
|
40 |
+
words = word_tokenize(text)
|
41 |
+
sentences = sent_tokenize(text)
|
42 |
+
|
43 |
+
# If the text has fewer sentences than requested, return the full text
|
44 |
+
if len(sentences) <= num_sentences:
|
45 |
+
return text
|
46 |
+
|
47 |
+
# Calculate word frequencies, excluding stop words and non-alphanumeric characters
|
48 |
+
freq_table = {}
|
49 |
+
for word in words:
|
50 |
+
word = word.lower()
|
51 |
+
if word not in stop_words and word.isalnum():
|
52 |
+
freq_table[word] = freq_table.get(word, 0) + 1
|
53 |
+
|
54 |
+
# Score sentences based on the frequency of their words
|
55 |
+
sentence_scores = {}
|
56 |
+
for sentence in sentences:
|
57 |
+
for word, freq in freq_table.items():
|
58 |
+
if word in sentence.lower():
|
59 |
+
sentence_scores[sentence] = sentence_scores.get(sentence, 0) + freq
|
60 |
+
|
61 |
+
# Select the top N sentences with the highest scores
|
62 |
+
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]
|
63 |
+
summary = ' '.join(summary_sentences)
|
64 |
+
return summary
|
65 |
+
|
66 |
@app.route("/", methods=["GET"])
|
67 |
def index():
|
68 |
return "Document Summarizer API is running! Use /summarize endpoint for POST requests."
|
|
|
84 |
file_content = file.read()
|
85 |
|
86 |
# Process file based on type
|
87 |
+
summary = None
|
88 |
file_ext = filename.rsplit(".", 1)[1].lower()
|
89 |
|
90 |
try:
|
91 |
if file_ext == "pdf":
|
92 |
+
summary = summarize_pdf(file_content)
|
93 |
elif file_ext == "docx":
|
94 |
+
summary = summarize_docx(file_content)
|
95 |
elif file_ext == "pptx":
|
96 |
+
summary = summarize_pptx(file_content)
|
97 |
elif file_ext == "txt":
|
98 |
+
summary = summarize_txt(file_content)
|
99 |
+
|
100 |
+
return jsonify({"filename": filename, "summary": summary})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
except Exception as e:
|
102 |
return jsonify({"error": f"Error processing file: {str(e)}"}), 500
|
103 |
|
104 |
+
# Summarization functions
|
105 |
+
def summarize_pdf(file_content):
|
106 |
reader = PdfReader(io.BytesIO(file_content))
|
107 |
+
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
108 |
+
return extractive_summary(text, num_sentences=5)
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def summarize_docx(file_content):
|
111 |
doc = Document(io.BytesIO(file_content))
|
112 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
113 |
+
return extractive_summary(text, num_sentences=5)
|
114 |
|
115 |
+
def summarize_pptx(file_content):
|
116 |
ppt = Presentation(io.BytesIO(file_content))
|
117 |
text = []
|
118 |
for slide in ppt.slides:
|
119 |
for shape in slide.shapes:
|
120 |
+
if hasattr(shape, "text"):
|
121 |
text.append(shape.text)
|
122 |
+
full_text = "\n".join(text)
|
123 |
+
return extractive_summary(full_text, num_sentences=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
def summarize_txt(file_content):
|
126 |
+
text = file_content.decode("utf-8")
|
127 |
+
return extractive_summary(text, num_sentences=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
+
app.run(host="0.0.0.0", port=7860, debug=True)
|
|