Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,37 @@
|
|
1 |
-
import
|
|
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from flask import Flask, request, jsonify
|
5 |
from diffusers import DiffusionPipeline
|
6 |
from PIL import Image
|
7 |
-
|
8 |
-
import base64
|
9 |
|
10 |
-
# Logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
# Flask app
|
15 |
app = Flask(__name__)
|
16 |
|
17 |
-
# Load
|
18 |
-
logger.info("Loading Zero123Plus pipeline...")
|
19 |
try:
|
|
|
20 |
pipe = DiffusionPipeline.from_pretrained(
|
21 |
"sudo-ai/zero123plus-v1.2",
|
22 |
-
torch_dtype=torch.float32,
|
23 |
-
variant=None, # avoid fp16 issues
|
24 |
)
|
25 |
pipe.to("cpu")
|
26 |
-
logger.info("
|
27 |
except Exception as e:
|
28 |
logger.error(f"Error loading model: {e}")
|
29 |
pipe = None
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@app.route("/generate", methods=["POST"])
|
36 |
def generate():
|
@@ -44,25 +45,19 @@ def generate():
|
|
44 |
if not image_data:
|
45 |
return jsonify({"error": "No image provided"}), 400
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
logger.info("Generating 3D views...")
|
52 |
-
output = pipe(image)
|
53 |
-
generated_image = output.images[0]
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
return jsonify({"image": f"data:image/png;base64,{img_base64}"})
|
61 |
-
|
62 |
except Exception as e:
|
63 |
-
logger.error(f"
|
64 |
return jsonify({"error": str(e)}), 500
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
-
logger.info("=== Application Startup at CPU mode =====")
|
68 |
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
import io
|
2 |
+
import base64
|
3 |
import torch
|
4 |
+
from flask import Flask, request, jsonify, send_file
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
from PIL import Image
|
7 |
+
import logging
|
|
|
8 |
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# Load the model once at startup (on CPU)
|
|
|
15 |
try:
|
16 |
+
logger.info("Loading Zero123Plus pipeline...")
|
17 |
pipe = DiffusionPipeline.from_pretrained(
|
18 |
"sudo-ai/zero123plus-v1.2",
|
19 |
+
torch_dtype=torch.float32, # CPU needs float32
|
|
|
20 |
)
|
21 |
pipe.to("cpu")
|
22 |
+
logger.info("=== Application Startup at CPU mode =====")
|
23 |
except Exception as e:
|
24 |
logger.error(f"Error loading model: {e}")
|
25 |
pipe = None
|
26 |
|
27 |
+
def pil_to_base64(image):
|
28 |
+
buffer = io.BytesIO()
|
29 |
+
image.save(buffer, format="PNG")
|
30 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
31 |
+
|
32 |
+
@app.route("/")
|
33 |
+
def home():
|
34 |
+
return "Zero123Plus CPU API is running!"
|
35 |
|
36 |
@app.route("/generate", methods=["POST"])
|
37 |
def generate():
|
|
|
45 |
if not image_data:
|
46 |
return jsonify({"error": "No image provided"}), 400
|
47 |
|
48 |
+
if image_data.startswith("data:image"):
|
49 |
+
image_data = image_data.split(",")[1]
|
50 |
|
51 |
+
image = Image.open(io.BytesIO(base64.b64decode(image_data))).convert("RGB")
|
|
|
|
|
|
|
52 |
|
53 |
+
result = pipe(image)
|
54 |
+
output_image = result.images[0]
|
55 |
+
|
56 |
+
return jsonify({"image": f"data:image/png;base64,{pil_to_base64(output_image)}"})
|
57 |
|
|
|
|
|
58 |
except Exception as e:
|
59 |
+
logger.error(f"Error generating image: {e}")
|
60 |
return jsonify({"error": str(e)}), 500
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
63 |
app.run(host="0.0.0.0", port=7860)
|