Spaces:
Configuration error
Configuration error
File size: 7,704 Bytes
28c8be9 34f3c9b 28c8be9 9c781c3 0ac095e 9c781c3 4f00e93 9c781c3 34f3c9b 0ac095e 34f3c9b 9c781c3 2f72390 9c781c3 4f00e93 9c781c3 4f00e93 9c781c3 34f3c9b 9c781c3 4f00e93 9c781c3 34f3c9b 9c781c3 4f00e93 9c781c3 4f00e93 9c781c3 4f00e93 9c781c3 34f3c9b 9c781c3 34f3c9b 9c781c3 34f3c9b 9c781c3 4f00e93 9c781c3 34f3c9b 9c781c3 34f3c9b 9c781c3 4f00e93 34f3c9b 9c781c3 34f3c9b 4f00e93 34f3c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
# add a command for installing flash-attn
os.system('pip install flash-attn --no-build-isolation')
os.system("pip install gradio==4.44.1")
import pygame
import numpy as np
import gradio as gr
import time
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
import re
import random
pygame.mixer.quit() # Disable sound
# Constants
WIDTH, HEIGHT = 800, 800
GRID_SIZE = 80
WHITE = (255, 255, 255)
GREEN = (34, 139, 34) # Forest green - more like an apple
RED = (200, 50, 50)
BLACK = (0, 0, 0)
GRAY = (128, 128, 128)
YELLOW = (218, 165, 32) # Golden yellow color
# Directions
UP = (0, -1)
DOWN = (0, 1)
LEFT = (-1, 0)
RIGHT = (1, 0)
STATIC = (0, 0)
ACTIONS = ["up", "down", "left", "right", "static"]
# Load AI Model
dtype = torch.bfloat16
magma_model_id = "microsoft/Magma-8B"
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype)
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
magam_model.to("cuda")
magma_img = pygame.image.load("./assets/images/magma_game_thin.png")
magma_img = pygame.transform.scale(magma_img, (GRID_SIZE, GRID_SIZE))
class MagmaFindGPU:
def __init__(self):
self.reset()
self.step_count = 0
def reset(self):
self.snake = [(5, 5)]
self.direction = RIGHT
self.score = 0
self.game_over = False
self.step_count = 0
self.place_target()
def place_target(self):
while True:
target_x = np.random.randint(1, WIDTH // GRID_SIZE - 1)
target_y = np.random.randint(1, HEIGHT // GRID_SIZE - 1)
if (target_x, target_y) not in self.snake:
self.target = (target_x, target_y)
break
def step(self, action):
if action == "up":
self.direction = UP
elif action == "down":
self.direction = DOWN
elif action == "left":
self.direction = LEFT
elif action == "right":
self.direction = RIGHT
elif action == "static":
self.direction = STATIC
if self.game_over:
self.reset()
return self.render(), self.score
new_head = (self.snake[0][0] + self.direction[0], self.snake[0][1] + self.direction[1])
if new_head[0] < 0 or new_head[1] < 0 or new_head[0] >= WIDTH // GRID_SIZE or new_head[1] >= HEIGHT // GRID_SIZE:
self.game_over = True
return self.render(), self.score
self.snake = [new_head] # Keep only the head (single block snake)
self.step_count += 1
# Check if the target is covered by four surrounding squares
head_x, head_y = self.snake[0]
neighbors = set([(head_x, head_y - 1), (head_x, head_y + 1), (head_x - 1, head_y), (head_x + 1, head_y)])
if neighbors.issuperset(set([self.target])):
self.score += 1
self.place_target()
return self.render(), self.score
def render(self):
pygame.init()
surface = pygame.Surface((WIDTH, HEIGHT))
surface.fill(BLACK)
head_x, head_y = self.snake[0]
surface.blit(magma_img, (head_x * GRID_SIZE, head_y * GRID_SIZE))
# pygame.draw.rect(surface, RED, (self.snake[0][0] * GRID_SIZE, self.snake[0][1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
pygame.draw.rect(surface, GREEN, (self.target[0] * GRID_SIZE, self.target[1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
# Draw four surrounding squares with labels
head_x, head_y = self.snake[0]
neighbors = [(head_x, head_y - 1), (head_x, head_y + 1), (head_x - 1, head_y), (head_x + 1, head_y)]
labels = ["1", "2", "3", "4"]
font = pygame.font.Font(None, 48)
# clone surface
surface_nomark = surface.copy()
for i, (nx, ny) in enumerate(neighbors):
if 0 <= nx < WIDTH // GRID_SIZE and 0 <= ny < HEIGHT // GRID_SIZE:
pygame.draw.rect(surface, RED, (nx * GRID_SIZE, ny * GRID_SIZE, GRID_SIZE, GRID_SIZE), GRID_SIZE)
# pygame.draw.rect(surface_nomark, RED, (nx * GRID_SIZE, ny * GRID_SIZE, GRID_SIZE, GRID_SIZE), GRID_SIZE)
text = font.render(labels[i], True, WHITE)
text_rect = text.get_rect(center=(nx * GRID_SIZE + GRID_SIZE // 2, ny * GRID_SIZE + GRID_SIZE // 2))
surface.blit(text, text_rect)
return np.array(pygame.surfarray.array3d(surface_nomark)).swapaxes(0, 1), np.array(pygame.surfarray.array3d(surface)).swapaxes(0, 1)
def get_state(self):
return self.render()
game = MagmaFindGPU()
def play_game():
state, state_som = game.get_state()
pil_img = Image.fromarray(state_som)
convs = [
{"role": "system", "content": "You are an agent that can see, talk, and act. Avoid hitting the wall."},
{"role": "user", "content": "<image_start><image><image_end>\nWhich mark is closer to green block? Answer with a single number."},
]
prompt = magma_processor.tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=True)
inputs = magma_processor(images=[pil_img], texts=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
inputs = inputs.to("cuda").to(dtype)
generation_args = {
"max_new_tokens": 10,
"temperature": 0.3,
"do_sample": True,
"use_cache": True,
"num_beams": 1,
}
with torch.inference_mode():
generate_ids = magam_model.generate(**inputs, **generation_args)
generate_ids = generate_ids[:, inputs["input_ids"].shape[-1] :]
action = magma_processor.decode(generate_ids[0], skip_special_tokens=True).strip()
# extract mark id fro action use re
match = re.search(r'\d+', action)
if match:
action = match.group(0)
if action.isdigit() and 1 <= int(action) <= 4:
action = ACTIONS[int(action) - 1]
else:
# random choose one from the pool
action = random.choice(ACTIONS[:-1])
else:
action = random.choice(ACTIONS[:-1])
img, score = game.step(action)
img = img[0]
return img, f"Score: {score}"
def reset_game():
game.reset()
return game.render()[0], "Score: 0"
MARKDOWN = """
<div align="center">
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] \[[Project Page](https://microsoft.github.io/Magma/)\] \[[Github Repo](https://github.com/microsoft/Magma)\] \[[Hugging Face Model](https://huggingface.co./microsoft/Magma-8B)\]
This demo is powered by [Gradio](https://gradio.app/).
<b>Goal: Collects the green blocks by automatically moving up, down, left and right.</b>
</div>
"""
with gr.Blocks() as interface:
gr.Markdown(MARKDOWN)
with gr.Row():
image_output = gr.Image(label="Game Screen")
with gr.Column():
score_output = gr.Text(label="Score", elem_classes="large-text")
gr.HTML("""
<style>
.large-text textarea {
font-size: 24px !important;
}
</style>
""")
start_btn = gr.Button("Start/Reset Game")
interface.load(fn=play_game, every=1, inputs=[], outputs=[image_output, score_output])
start_btn.click(fn=reset_game, inputs=[], outputs=[image_output, score_output])
interface.launch()
|