File size: 7,704 Bytes
28c8be9
34f3c9b
28c8be9
 
 
9c781c3
 
 
 
 
 
 
 
 
0ac095e
9c781c3
 
 
4f00e93
 
9c781c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f3c9b
0ac095e
34f3c9b
 
 
 
9c781c3
2f72390
9c781c3
 
 
 
 
4f00e93
 
9c781c3
 
 
 
 
4f00e93
9c781c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f3c9b
 
 
9c781c3
 
4f00e93
9c781c3
34f3c9b
9c781c3
 
 
4f00e93
9c781c3
 
 
 
 
 
 
 
 
 
4f00e93
9c781c3
 
 
 
 
 
 
 
 
4f00e93
 
9c781c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f3c9b
9c781c3
34f3c9b
9c781c3
 
34f3c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c781c3
 
 
 
 
4f00e93
9c781c3
 
 
 
 
 
 
34f3c9b
 
9c781c3
34f3c9b
 
 
9c781c3
 
 
 
 
 
 
 
4f00e93
34f3c9b
 
9c781c3
 
 
 
 
 
34f3c9b
4f00e93
34f3c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
# add a command for installing flash-attn
os.system('pip install flash-attn --no-build-isolation')
os.system("pip install gradio==4.44.1")

import pygame
import numpy as np
import gradio as gr
import time
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
import re
import random

pygame.mixer.quit()  # Disable sound

# Constants
WIDTH, HEIGHT = 800, 800
GRID_SIZE = 80
WHITE = (255, 255, 255)
GREEN = (34, 139, 34)  # Forest green - more like an apple
RED = (200, 50, 50)
BLACK = (0, 0, 0)
GRAY = (128, 128, 128)
YELLOW = (218, 165, 32)  # Golden yellow color

# Directions
UP = (0, -1)
DOWN = (0, 1)
LEFT = (-1, 0)
RIGHT = (1, 0)
STATIC = (0, 0)

ACTIONS = ["up", "down", "left", "right", "static"]

# Load AI Model
dtype = torch.bfloat16
magma_model_id = "microsoft/Magma-8B"
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype)
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
magam_model.to("cuda")

magma_img = pygame.image.load("./assets/images/magma_game_thin.png")
magma_img = pygame.transform.scale(magma_img, (GRID_SIZE, GRID_SIZE))

class MagmaFindGPU:
    def __init__(self):
        self.reset()
        self.step_count = 0

    def reset(self):
        self.snake = [(5, 5)]
        self.direction = RIGHT
        self.score = 0
        self.game_over = False
        self.step_count = 0
        self.place_target()

    def place_target(self):
        while True:
            target_x = np.random.randint(1, WIDTH // GRID_SIZE - 1)
            target_y = np.random.randint(1, HEIGHT // GRID_SIZE - 1)
            if (target_x, target_y) not in self.snake:
                self.target = (target_x, target_y)
                break

    def step(self, action):
        if action == "up":
            self.direction = UP
        elif action == "down":
            self.direction = DOWN
        elif action == "left":
            self.direction = LEFT
        elif action == "right":
            self.direction = RIGHT
        elif action == "static":
            self.direction = STATIC
        
        if self.game_over:
            self.reset()
            return self.render(), self.score
        
        new_head = (self.snake[0][0] + self.direction[0], self.snake[0][1] + self.direction[1])
                
        if new_head[0] < 0 or new_head[1] < 0 or new_head[0] >= WIDTH // GRID_SIZE or new_head[1] >= HEIGHT // GRID_SIZE:
            self.game_over = True
            return self.render(), self.score
        
        self.snake = [new_head]  # Keep only the head (single block snake)
        self.step_count += 1
        
        # Check if the target is covered by four surrounding squares
        head_x, head_y = self.snake[0]
        neighbors = set([(head_x, head_y - 1), (head_x, head_y + 1), (head_x - 1, head_y), (head_x + 1, head_y)])
        
        if neighbors.issuperset(set([self.target])):
            self.score += 1
            self.place_target()

        return self.render(), self.score

    def render(self):
        pygame.init()
        surface = pygame.Surface((WIDTH, HEIGHT))
        surface.fill(BLACK)
        
        head_x, head_y = self.snake[0]
        surface.blit(magma_img, (head_x * GRID_SIZE, head_y * GRID_SIZE))        
        
        # pygame.draw.rect(surface, RED, (self.snake[0][0] * GRID_SIZE, self.snake[0][1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
        pygame.draw.rect(surface, GREEN, (self.target[0] * GRID_SIZE, self.target[1] * GRID_SIZE, GRID_SIZE, GRID_SIZE))
        
        # Draw four surrounding squares with labels
        head_x, head_y = self.snake[0]
        neighbors = [(head_x, head_y - 1), (head_x, head_y + 1), (head_x - 1, head_y), (head_x + 1, head_y)]
        labels = ["1", "2", "3", "4"]
        font = pygame.font.Font(None, 48)
        
        # clone surface
        surface_nomark = surface.copy()
        for i, (nx, ny) in enumerate(neighbors):
            if 0 <= nx < WIDTH // GRID_SIZE and 0 <= ny < HEIGHT // GRID_SIZE:
                pygame.draw.rect(surface, RED, (nx * GRID_SIZE, ny * GRID_SIZE, GRID_SIZE, GRID_SIZE), GRID_SIZE)
                # pygame.draw.rect(surface_nomark, RED, (nx * GRID_SIZE, ny * GRID_SIZE, GRID_SIZE, GRID_SIZE), GRID_SIZE)

                text = font.render(labels[i], True, WHITE)
                text_rect = text.get_rect(center=(nx * GRID_SIZE + GRID_SIZE // 2, ny * GRID_SIZE + GRID_SIZE // 2))
                surface.blit(text, text_rect)
        
        return np.array(pygame.surfarray.array3d(surface_nomark)).swapaxes(0, 1), np.array(pygame.surfarray.array3d(surface)).swapaxes(0, 1)
    
    def get_state(self):
        return self.render()

game = MagmaFindGPU()

def play_game():
    state, state_som = game.get_state()
    pil_img = Image.fromarray(state_som)
    convs = [
        {"role": "system", "content": "You are an agent that can see, talk, and act. Avoid hitting the wall."},            
        {"role": "user", "content": "<image_start><image><image_end>\nWhich mark is closer to green block? Answer with a single number."},
    ]
    prompt = magma_processor.tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=True)
    inputs = magma_processor(images=[pil_img], texts=prompt, return_tensors="pt")
    inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
    inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)    
    inputs = inputs.to("cuda").to(dtype)
    generation_args = { 
        "max_new_tokens": 10, 
        "temperature": 0.3, 
        "do_sample": True, 
        "use_cache": True,
        "num_beams": 1,
    }
    with torch.inference_mode():
        generate_ids = magam_model.generate(**inputs, **generation_args)
    generate_ids = generate_ids[:, inputs["input_ids"].shape[-1] :]
    action = magma_processor.decode(generate_ids[0], skip_special_tokens=True).strip()
    # extract mark id fro action use re
    match = re.search(r'\d+', action)
    if match:
        action = match.group(0)
        if action.isdigit() and 1 <= int(action) <= 4:
            action = ACTIONS[int(action) - 1]
        else:
            # random choose one from the pool
            action = random.choice(ACTIONS[:-1])
    else:
        action = random.choice(ACTIONS[:-1])

    img, score = game.step(action)
    img = img[0]
    return img, f"Score: {score}"

def reset_game():
    game.reset()
    return game.render()[0], "Score: 0"

MARKDOWN = """
<div align="center">
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>

\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\] &nbsp; \[[Hugging Face Model](https://huggingface.co./microsoft/Magma-8B)\] &nbsp; 

This demo is powered by [Gradio](https://gradio.app/).

<b>Goal: Collects the green blocks by automatically moving up, down, left and right.</b>

</div>
"""

with gr.Blocks() as interface:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        image_output = gr.Image(label="Game Screen")
        with gr.Column():
            score_output = gr.Text(label="Score", elem_classes="large-text")
            gr.HTML("""
                <style>
                .large-text textarea {
                    font-size: 24px !important;
                }
                </style>
            """)
            start_btn = gr.Button("Start/Reset Game")

    interface.load(fn=play_game, every=1, inputs=[], outputs=[image_output, score_output])
    start_btn.click(fn=reset_game, inputs=[], outputs=[image_output, score_output])

interface.launch()