rishicleaner / app.py
Miquel Farré
v1
3a79668
import cv2
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import gradio as gr
import tempfile
import os
import shutil
def edge_directed_antialiasing(img, power=2.0):
"""
Apply edge-directed anti-aliasing with adjustable power
Parameters:
- img: Input image (numpy array)
- power: Anti-aliasing strength (1.0 is standard, higher values increase the effect)
Returns:
- Output image with anti-aliasing applied
"""
# If image has alpha channel, separate it
has_alpha = img.shape[2] == 4 if len(img.shape) > 2 else False
if has_alpha:
bgr = img[:, :, :3]
alpha = img[:, :, 3]
else:
bgr = img
# Create binary mask from grayscale image if no alpha
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
_, alpha = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# Convert to grayscale for edge detection
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
# Step 1: Detect edges using Canny
# Lower thresholds to catch more edges when power is high
canny_threshold1 = int(100 / power) # Lower threshold when power is high
canny_threshold2 = int(200 / power) # Lower threshold when power is high
edges = cv2.Canny(gray, canny_threshold1, canny_threshold2)
# Dilate edges more when power is high
kernel_size = int(3 * power) # Increase kernel size with power
kernel_size = max(3, kernel_size if kernel_size % 2 == 1 else kernel_size + 1) # Ensure odd kernel size
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# More iterations for higher power
dilation_iterations = max(1, int(power))
dilated_edges = cv2.dilate(edges, kernel, iterations=dilation_iterations)
# Step 2: Calculate gradient direction using Sobel
# Increase kernel size for higher power
sobel_ksize = 3
if power > 2.0:
sobel_ksize = 5
if power > 3.0:
sobel_ksize = 7
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_ksize)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_ksize)
# Calculate gradient magnitude and direction
magnitude = np.sqrt(sobelx**2 + sobely**2)
direction = np.arctan2(sobely, sobelx) * 180 / np.pi
# Create output image, starting with the original
output = bgr.copy()
h, w = output.shape[:2]
# Step 3: Apply targeted smoothing along edge directions
# Sample farther away for higher power
radius = max(1, int(power))
edge_pixels = np.where(dilated_edges > 0)
for y, x in zip(edge_pixels[0], edge_pixels[1]):
# Skip border pixels
if x < radius or y < radius or x >= w-radius or y >= h-radius:
continue
# Get local direction (perpendicular to gradient)
local_dir = direction[y, x] + 90
if local_dir > 180:
local_dir -= 360
# Normalize direction to 0-180 degrees
local_dir = ((local_dir + 180) % 180)
# Determine interpolation direction based on edge angle
if 22.5 <= local_dir < 67.5: # ~45 degree diagonal
# Diagonal top-left to bottom-right
neighbors = [(y-radius, x-radius), (y+radius, x+radius)]
weights = [0.5, 0.5]
elif 67.5 <= local_dir < 112.5: # Vertical
# Top to bottom
neighbors = [(y-radius, x), (y+radius, x)]
weights = [0.5, 0.5]
elif 112.5 <= local_dir < 157.5: # ~135 degree diagonal
# Diagonal top-right to bottom-left
neighbors = [(y-radius, x+radius), (y+radius, x-radius)]
weights = [0.5, 0.5]
else: # Horizontal
# Left to right
neighbors = [(y, x-radius), (y, x+radius)]
weights = [0.5, 0.5]
# Only interpolate if we're between different colors (at the border)
center_value = gray[y, x]
neighbor_values = [gray[ny, nx] for ny, nx in neighbors]
# Lower contrast threshold when power is high
contrast_threshold = int(50 / power)
# Check if this is an edge between very different values
if abs(neighbor_values[0] - neighbor_values[1]) > contrast_threshold:
# Apply interpolation based on local contrast
for c in range(3): # RGB channels
weighted_sum = sum(weights[i] * bgr[ny, nx, c] for i, (ny, nx) in enumerate(neighbors))
# More interpolation weight when power is high
blend_factor = min(0.9, 0.3 * power)
# Apply it with a blend factor to preserve some original detail
output[y, x, c] = int((1-blend_factor) * weighted_sum + blend_factor * bgr[y, x, c])
# Update alpha channel with the same smoothing for edges
if has_alpha:
new_alpha = alpha.copy()
# Apply a specific smoothing to the alpha channel's edges
alpha_edges = cv2.Canny(alpha, int(100/power), int(200/power))
# More dilation iterations for stronger effect
alpha_dilation_iter = max(2, int(power * 2))
dilated_alpha_edges = cv2.dilate(alpha_edges, kernel, iterations=alpha_dilation_iter)
# Radius for sampling neighborhood
alpha_radius = max(2, int(power * 2))
# For each edge pixel in alpha
alpha_edge_pixels = np.where(dilated_alpha_edges > 0)
for y, x in zip(alpha_edge_pixels[0], alpha_edge_pixels[1]):
if x < alpha_radius or y < alpha_radius or x >= w-alpha_radius or y >= h-alpha_radius:
continue
# Use a larger neighborhood for better smoothing of alpha edges
# Size increases with power
window_radius = alpha_radius
neighborhood = alpha[y-window_radius:y+window_radius+1, x-window_radius:x+window_radius+1].astype(np.float32)
# Generate gaussian-like weights based on distance from center
kernel_size = 2 * window_radius + 1
weight_matrix = np.zeros((kernel_size, kernel_size), dtype=np.float32)
# Create distance-based weights
center = window_radius
for wy in range(kernel_size):
for wx in range(kernel_size):
# Calculate distance from center
dist = np.sqrt((wy - center)**2 + (wx - center)**2)
# Adjust falloff based on power
falloff = 1.0 / power
# Gaussian-like weight
weight_matrix[wy, wx] = np.exp(-(dist**2) / (2 * (window_radius * falloff)**2))
# Normalize weights
weight_matrix = weight_matrix / weight_matrix.sum()
# Apply weighted average
new_alpha[y, x] = int(np.sum(neighborhood * weight_matrix))
# Merge BGR with new alpha
output = np.dstack([output, new_alpha])
return output
def save_as_jpg(img, file_path):
"""
Save image as JPG with high quality
"""
# If image has alpha channel, blend with white background
if len(img.shape) > 2 and img.shape[2] == 4:
bgr = img[:, :, :3]
alpha = img[:, :, 3].astype(float) / 255
# Create white background
bg = np.ones_like(bgr) * 255
# Blend with background
alpha = np.expand_dims(alpha, axis=2)
alpha = np.repeat(alpha, 3, axis=2)
result = (bgr * alpha + bg * (1 - alpha)).astype(np.uint8)
else:
result = img
# Save as JPG
cv2.imwrite(file_path, result, [cv2.IMWRITE_JPEG_QUALITY, 95])
return file_path
def create_output_dirs():
"""Create necessary output directories"""
output_dir = os.path.join(tempfile.gettempdir(), "antialiasing_output")
os.makedirs(output_dir, exist_ok=True)
return output_dir
def process_image(input_image):
"""
Process image function for Gradio interface
"""
# Create output directory for our files
output_dir = create_output_dirs()
# Convert from RGB (Gradio) to BGR (OpenCV)
img_bgr = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
# Apply edge directed anti-aliasing with power=2.0
processed_bgr = edge_directed_antialiasing(img_bgr, power=2.0)
# Save the processed image explicitly as JPG
jpg_path = os.path.join(output_dir, "antialiased_image.jpg")
save_as_jpg(processed_bgr, jpg_path)
# Convert back to RGB for display in Gradio
if processed_bgr.shape[2] == 4: # Has alpha channel
# Blend with white background
bg = np.ones_like(processed_bgr[:,:,:3]) * 255
alpha = processed_bgr[:,:,3]
alpha_norm = alpha.astype(float) / 255
alpha_norm = np.expand_dims(alpha_norm, axis=2)
alpha_norm = np.repeat(alpha_norm, 3, axis=2)
processed_rgb = processed_bgr[:,:,:3] * alpha_norm + bg * (1 - alpha_norm)
processed_rgb = processed_rgb.astype(np.uint8)
else:
processed_rgb = cv2.cvtColor(processed_bgr, cv2.COLOR_BGR2RGB)
# Create comparison visualization
h, w = input_image.shape[:2]
dpi = 100
plt.figure(figsize=(w*2/dpi, h/dpi), dpi=dpi)
plt.subplot(1, 2, 1)
plt.imshow(input_image)
plt.title("Original")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(processed_rgb)
plt.title("Anti-aliased (Power = 2.0)")
plt.axis('off')
plt.tight_layout()
# Save the comparison
comparison_file = os.path.join(output_dir, "comparison.jpg")
plt.savefig(comparison_file, dpi=dpi, bbox_inches='tight')
plt.close()
return processed_rgb, jpg_path, comparison_file
# Create Gradio interface
with gr.Blocks(title="Edge-Directed Anti-Aliasing") as app:
gr.Markdown("# Edge-Directed Anti-Aliasing Tool")
gr.Markdown("Upload an image and apply edge-directed anti-aliasing to smooth jagged edges.")
with gr.Row():
input_image = gr.Image(label="Upload Image", type="numpy")
output_image = gr.Image(label="Anti-Aliased Result", type="numpy")
with gr.Row():
process_button = gr.Button("Apply Anti-Aliasing (Power = 2.0)")
with gr.Row():
download_jpg = gr.File(label="Download Anti-Aliased JPG", type="filepath")
comparison_view = gr.Image(label="Comparison", type="filepath")
# Process button functionality
process_button.click(
fn=process_image,
inputs=[input_image],
outputs=[output_image, download_jpg, comparison_view]
)
# Launch the app
if __name__ == "__main__":
app.launch(share=True)