Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import os | |
import uuid | |
from PIL import Image | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cuda") | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
# Get the segmented image (RGBA) | |
processed_image = process(im) | |
# Generate a unique filename for the processed image | |
unique_id = str(uuid.uuid4())[:8] | |
output_path = f"output_{unique_id}.jpg" | |
# Create a white background and properly composite with the RGBA image | |
white_bg = Image.new("RGB", processed_image.size, (255, 255, 255)) | |
if processed_image.mode == 'RGBA': | |
# Use the alpha channel as a mask for compositing | |
white_bg.paste(processed_image, mask=processed_image.split()[3]) # The 4th channel is alpha | |
white_bg.save(output_path, format="JPEG") | |
# Return the composited image for display to match what's being downloaded | |
return white_bg, output_path | |
else: | |
rgb_image = processed_image.convert("RGB") | |
rgb_image.save(output_path, format="JPEG") | |
return rgb_image, output_path | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
# Since we're outputting RGB instead of RGBA, create a composite | |
# We'll keep the image with mask for display purposes | |
result = image.copy() | |
result.putalpha(mask) | |
return result | |
def process_file(f): | |
im = load_img(f, output_type="pil") | |
im = im.convert("RGB") | |
# Get the segmented image (RGBA) | |
transparent = process(im) | |
# Save as JPEG instead of PNG | |
unique_id = str(uuid.uuid4())[:8] | |
output_path = f"output_{unique_id}.jpg" | |
# Create a white background and properly composite with the RGBA image | |
white_bg = Image.new("RGB", transparent.size, (255, 255, 255)) | |
if transparent.mode == 'RGBA': | |
# Use the alpha channel as a mask for compositing | |
white_bg.paste(transparent, mask=transparent.split()[3]) # The 4th channel is alpha | |
white_bg.save(output_path, format="JPEG") | |
else: | |
rgb_image = transparent.convert("RGB") | |
rgb_image.save(output_path, format="JPEG") | |
return output_path | |
# Using a single Blocks API instead of TabbedInterface to avoid compatibility issues | |
with gr.Blocks(title="Background Removal Tool") as demo: | |
with gr.Tabs(): | |
with gr.Tab("Image Upload"): | |
with gr.Row(): | |
image_upload = gr.Image(label="Upload an image") | |
with gr.Row(): | |
submit_btn = gr.Button("Process Image") | |
with gr.Row(): | |
output_image = gr.Image(label="Processed Image") | |
output_file = gr.File(label="Download Processed Image") | |
submit_btn.click(fn=fn, inputs=image_upload, outputs=[output_image, output_file]) | |
with gr.Tab("URL Input"): | |
with gr.Row(): | |
url_input = gr.Textbox(label="Paste an image URL") | |
with gr.Row(): | |
submit_url_btn = gr.Button("Process URL") | |
with gr.Row(): | |
output_image_url = gr.Image(label="Processed Image") | |
output_file_url = gr.File(label="Download Processed Image") | |
submit_url_btn.click(fn=fn, inputs=url_input, outputs=[output_image_url, output_file_url]) | |
with gr.Tab("File Output"): | |
with gr.Row(): | |
image_file_upload = gr.Image(label="Upload an image", type="filepath") | |
with gr.Row(): | |
submit_file_btn = gr.Button("Process and Download") | |
with gr.Row(): | |
output_file_path = gr.File(label="Download JPEG File") | |
submit_file_btn.click(fn=process_file, inputs=image_file_upload, outputs=output_file_path) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |