Spaces:
Running
Running
Nice
Browse filesNice.
- index.html +172 -107
index.html
CHANGED
@@ -1,119 +1,184 @@
|
|
1 |
<!DOCTYPE html>
|
2 |
-
<html
|
3 |
<head>
|
4 |
-
<meta charset="
|
5 |
-
<meta name="
|
6 |
-
<
|
7 |
-
<
|
8 |
-
<
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
margin: 0;
|
25 |
-
font-size: 2.5em;
|
26 |
-
}
|
27 |
-
.container {
|
28 |
-
max-width: 800px;
|
29 |
-
margin: 20px auto;
|
30 |
-
padding: 20px;
|
31 |
-
background: white;
|
32 |
-
border-radius: 8px;
|
33 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
34 |
-
}
|
35 |
-
.paper {
|
36 |
-
margin-bottom: 20px;
|
37 |
-
}
|
38 |
-
.paper a {
|
39 |
-
text-decoration: none;
|
40 |
-
color: #4CAF50;
|
41 |
-
font-weight: bold;
|
42 |
-
}
|
43 |
-
.paper a:hover {
|
44 |
-
text-decoration: underline;
|
45 |
-
}
|
46 |
-
.coming-soon {
|
47 |
-
color: #e74c3c;
|
48 |
-
font-size: 0.9em;
|
49 |
-
margin-left: 10px;
|
50 |
-
}
|
51 |
-
footer {
|
52 |
-
text-align: center;
|
53 |
-
padding: 10px 0;
|
54 |
-
background: #4CAF50;
|
55 |
-
color: white;
|
56 |
-
margin-top: 20px;
|
57 |
-
}
|
58 |
-
</style>
|
59 |
</head>
|
60 |
<body>
|
61 |
-
<header>
|
62 |
-
<h1>DeepSeek Papers</h1>
|
63 |
-
</header>
|
64 |
-
<div class="container">
|
65 |
-
<h2>DeepSeek Research Contributions</h2>
|
66 |
-
<p>Below is a list of significant papers by DeepSeek detailing advancements in large language models (LLMs). Each paper includes a brief description and highlights upcoming deep dives.</p>
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
<
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
This paper introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing training costs by 42%.</p>
|
80 |
-
</div>
|
81 |
-
<div class="paper">
|
82 |
-
<a href="#">DeepSeek-V3 Technical Report</a>
|
83 |
-
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
84 |
-
<p><strong>Release Date:</strong> December 2024<br>
|
85 |
-
This report discusses the scaling of sparse MoE networks to 671 billion parameters, utilizing mixed precision training and HPC co-design strategies.</p>
|
86 |
-
</div>
|
87 |
-
<div class="paper">
|
88 |
-
<a href="#">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning</a>
|
89 |
-
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
90 |
-
<p><strong>Release Date:</strong> January 20, 2025<br>
|
91 |
-
The R1 model enhances reasoning capabilities through large-scale reinforcement learning, competing directly with leading models like OpenAI's o1.</p>
|
92 |
</div>
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<div class="
|
100 |
-
<
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
</div>
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
</div>
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
</div>
|
114 |
</div>
|
115 |
-
|
116 |
-
|
117 |
-
</footer>
|
118 |
</body>
|
119 |
</html>
|
|
|
1 |
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
<head>
|
4 |
+
<meta charset="utf-8">
|
5 |
+
<meta name="description" content="DeepSeek: Advancing Open-Source Language Models">
|
6 |
+
<meta name="keywords" content="DeepSeek, LLM, AI">
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
8 |
+
<title>DeepSeek: Advancing Open-Source Language Models</title>
|
9 |
+
|
10 |
+
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
|
11 |
+
<link rel="stylesheet" href="./static/css/bulma.min.css">
|
12 |
+
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
|
13 |
+
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
|
14 |
+
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
|
15 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
|
16 |
+
<link rel="stylesheet" href="./static/css/index.css">
|
17 |
+
<link rel="icon" href="./static/images/favicon.svg">
|
18 |
+
|
19 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
|
20 |
+
<script defer src="./static/js/fontawesome.all.min.js"></script>
|
21 |
+
<script src="./static/js/bulma-carousel.min.js"></script>
|
22 |
+
<script src="./static/js/bulma-slider.min.js"></script>
|
23 |
+
<script src="./static/js/index.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
</head>
|
25 |
<body>
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
<section class="hero">
|
28 |
+
<div class="hero-body">
|
29 |
+
<div class="container is-max-desktop">
|
30 |
+
<div class="columns is-centered">
|
31 |
+
<div class="column has-text-centered">
|
32 |
+
<h1 class="title is-1 publication-title">DeepSeek Papers</h1>
|
33 |
+
<div class="is-size-5 publication-authors">
|
34 |
+
Advancing Open-Source Language Models
|
35 |
+
</div>
|
36 |
+
</div>
|
37 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
</div>
|
39 |
+
</div>
|
40 |
+
</section>
|
41 |
+
|
42 |
+
<section class="section">
|
43 |
+
<div class="container is-max-desktop">
|
44 |
+
<!-- Abstract. -->
|
45 |
+
<div class="columns is-centered has-text-centered">
|
46 |
+
<div class="column is-four-fifths">
|
47 |
+
<h2 class="title is-3">DeepSeek Research Contributions</h2>
|
48 |
+
<div class="content has-text-justified">
|
49 |
+
<p>
|
50 |
+
Below is a list of significant papers by DeepSeek detailing advancements in large language models (LLMs),
|
51 |
+
ordered by release date from most recent to oldest. Each paper includes a brief description and highlights
|
52 |
+
upcoming deep dives.
|
53 |
+
</p>
|
54 |
+
</div>
|
55 |
+
</div>
|
56 |
</div>
|
57 |
+
<!--/ Abstract. -->
|
58 |
+
|
59 |
+
<!-- Paper Collection -->
|
60 |
+
<div class="columns is-centered">
|
61 |
+
<div class="column is-four-fifths">
|
62 |
+
<div class="content">
|
63 |
+
<div class="publication-list">
|
64 |
+
<!-- Papers in chronological order -->
|
65 |
+
<div class="publication-item">
|
66 |
+
<div class="publication-title">
|
67 |
+
<a href="#">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning</a>
|
68 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
69 |
+
</div>
|
70 |
+
<div class="publication-info">
|
71 |
+
<strong>Release Date:</strong> January 20, 2025
|
72 |
+
</div>
|
73 |
+
<div class="publication-description">
|
74 |
+
The R1 model enhances reasoning capabilities through large-scale reinforcement learning, competing
|
75 |
+
directly with leading models like OpenAI's o1.
|
76 |
+
</div>
|
77 |
+
</div>
|
78 |
+
|
79 |
+
<div class="publication-item">
|
80 |
+
<div class="publication-title">
|
81 |
+
<a href="#">DeepSeek-V3 Technical Report</a>
|
82 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
83 |
+
</div>
|
84 |
+
<div class="publication-info">
|
85 |
+
<strong>Release Date:</strong> December 2024
|
86 |
+
</div>
|
87 |
+
<div class="publication-description">
|
88 |
+
This report discusses the scaling of sparse MoE networks to 671 billion parameters, utilizing mixed
|
89 |
+
precision training and HPC co-design strategies.
|
90 |
+
</div>
|
91 |
+
</div>
|
92 |
+
|
93 |
+
<div class="publication-item">
|
94 |
+
<div class="publication-title">
|
95 |
+
<a href="#">DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model</a>
|
96 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
97 |
+
</div>
|
98 |
+
<div class="publication-info">
|
99 |
+
<strong>Release Date:</strong> May 2024
|
100 |
+
</div>
|
101 |
+
<div class="publication-description">
|
102 |
+
This paper introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing
|
103 |
+
training costs by 42%.
|
104 |
+
</div>
|
105 |
+
</div>
|
106 |
+
|
107 |
+
<div class="publication-item">
|
108 |
+
<div class="publication-title">
|
109 |
+
<a href="#">DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models</a>
|
110 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
111 |
+
</div>
|
112 |
+
<div class="publication-info">
|
113 |
+
<strong>Release Date:</strong> April 2024
|
114 |
+
</div>
|
115 |
+
<div class="publication-description">
|
116 |
+
This paper presents methods to improve mathematical reasoning in LLMs, introducing the Group
|
117 |
+
Relative Policy Optimization (GRPO) algorithm.
|
118 |
+
</div>
|
119 |
+
</div>
|
120 |
+
|
121 |
+
<div class="publication-item">
|
122 |
+
<div class="publication-title">
|
123 |
+
<a href="#">DeepSeekLLM: Scaling Open-Source Language Models with Longer-termism</a>
|
124 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
125 |
+
</div>
|
126 |
+
<div class="publication-info">
|
127 |
+
<strong>Release Date:</strong> November 29, 2023
|
128 |
+
</div>
|
129 |
+
<div class="publication-description">
|
130 |
+
This foundational paper explores scaling laws and the trade-offs between data and model size,
|
131 |
+
establishing the groundwork for subsequent models.
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
|
135 |
+
<div class="publication-item">
|
136 |
+
<div class="publication-title">
|
137 |
+
<a href="#">DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data</a>
|
138 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
139 |
+
</div>
|
140 |
+
<div class="publication-description">
|
141 |
+
Focuses on enhancing theorem proving capabilities in language models using synthetic data for training.
|
142 |
+
</div>
|
143 |
+
</div>
|
144 |
+
|
145 |
+
<div class="publication-item">
|
146 |
+
<div class="publication-title">
|
147 |
+
<a href="#">DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence</a>
|
148 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
149 |
+
</div>
|
150 |
+
<div class="publication-description">
|
151 |
+
This paper details advancements in code-related tasks with an emphasis on open-source methodologies,
|
152 |
+
improving upon earlier coding models.
|
153 |
+
</div>
|
154 |
+
</div>
|
155 |
+
|
156 |
+
<div class="publication-item">
|
157 |
+
<div class="publication-title">
|
158 |
+
<a href="#">DeepSeekMoE</a>
|
159 |
+
<span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
|
160 |
+
</div>
|
161 |
+
<div class="publication-description">
|
162 |
+
Discusses the integration and benefits of the Mixture-of-Experts approach within the DeepSeek framework.
|
163 |
+
</div>
|
164 |
+
</div>
|
165 |
+
</div>
|
166 |
+
</div>
|
167 |
+
</div>
|
168 |
</div>
|
169 |
+
</div>
|
170 |
+
</section>
|
171 |
+
|
172 |
+
<footer class="footer">
|
173 |
+
<div class="container">
|
174 |
+
<div class="content has-text-centered">
|
175 |
+
<p>
|
176 |
+
This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
|
177 |
+
Commons Attribution-ShareAlike 4.0 International License</a>.
|
178 |
+
</p>
|
179 |
</div>
|
180 |
</div>
|
181 |
+
</footer>
|
182 |
+
|
|
|
183 |
</body>
|
184 |
</html>
|