metacritical commited on
Commit
63c5240
·
verified ·
1 Parent(s): 73705e5

Some mopre

Browse files
Files changed (1) hide show
  1. index.html +72 -2
index.html CHANGED
@@ -91,7 +91,7 @@
91
  </div>
92
  </div>
93
 
94
- <!-- Continue with other papers... -->
95
  <div class="card paper-card">
96
  <div class="card-content">
97
  <h3 class="title is-4">
@@ -106,7 +106,77 @@
106
  </div>
107
  </div>
108
 
109
- <!-- Add remaining papers following the same pattern -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  </div>
112
  </div>
 
91
  </div>
92
  </div>
93
 
94
+ <!-- DeepSeek-V3 -->
95
  <div class="card paper-card">
96
  <div class="card-content">
97
  <h3 class="title is-4">
 
106
  </div>
107
  </div>
108
 
109
+ <!-- DeepSeek-R1 -->
110
+ <div class="card paper-card">
111
+ <div class="card-content">
112
+ <h3 class="title is-4">
113
+ DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
114
+ <span class="coming-soon-badge">Deep Dive Coming Soon</span>
115
+ </h3>
116
+ <p class="release-date">Released: January 20, 2025</p>
117
+ <p class="paper-description">
118
+ The R1 model builds on previous work to enhance reasoning capabilities through large-scale
119
+ reinforcement learning, competing directly with leading models like OpenAI's o1.
120
+ </p>
121
+ </div>
122
+ </div>
123
+
124
+ <!-- DeepSeekMath -->
125
+ <div class="card paper-card">
126
+ <div class="card-content">
127
+ <h3 class="title is-4">
128
+ DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
129
+ <span class="coming-soon-badge">Deep Dive Coming Soon</span>
130
+ </h3>
131
+ <p class="release-date">Released: April 2024</p>
132
+ <p class="paper-description">
133
+ This paper presents methods to improve mathematical reasoning in LLMs, introducing the
134
+ Group Relative Policy Optimization (GRPO) algorithm during reinforcement learning stages.
135
+ </p>
136
+ </div>
137
+ </div>
138
+
139
+ <!-- DeepSeek-Prover -->
140
+ <div class="card paper-card">
141
+ <div class="card-content">
142
+ <h3 class="title is-4">
143
+ DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data
144
+ <span class="coming-soon-badge">Deep Dive Coming Soon</span>
145
+ </h3>
146
+ <p class="paper-description">
147
+ Focuses on enhancing theorem proving capabilities in language models using synthetic data
148
+ for training, establishing new benchmarks in automated mathematical reasoning.
149
+ </p>
150
+ </div>
151
+ </div>
152
+
153
+ <!-- DeepSeek-Coder-V2 -->
154
+ <div class="card paper-card">
155
+ <div class="card-content">
156
+ <h3 class="title is-4">
157
+ DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
158
+ <span class="coming-soon-badge">Deep Dive Coming Soon</span>
159
+ </h3>
160
+ <p class="paper-description">
161
+ This paper details advancements in code-related tasks with an emphasis on open-source
162
+ methodologies, improving upon earlier coding models with enhanced capabilities.
163
+ </p>
164
+ </div>
165
+ </div>
166
+
167
+ <!-- DeepSeekMoE -->
168
+ <div class="card paper-card">
169
+ <div class="card-content">
170
+ <h3 class="title is-4">
171
+ DeepSeekMoE: Advancing Mixture-of-Experts Architecture
172
+ <span class="coming-soon-badge">Deep Dive Coming Soon</span>
173
+ </h3>
174
+ <p class="paper-description">
175
+ Discusses the integration and benefits of the Mixture-of-Experts approach within the
176
+ DeepSeek framework, focusing on scalability and efficiency improvements.
177
+ </p>
178
+ </div>
179
+ </div>
180
 
181
  </div>
182
  </div>