DeepSeekPapers / index.html
metacritical's picture
Test new design template.
37a6573 verified
raw
history blame
4.65 kB
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>DeepSeek Papers</title>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
<style>
body {
font-family: 'Arial', sans-serif;
margin: 0;
padding: 0;
line-height: 1.6;
color: #333;
background-color: #f9f9f9;
}
header {
background: #4CAF50;
color: white;
padding: 20px 0;
text-align: center;
}
h1 {
margin: 0;
font-size: 2.5em;
}
.container {
max-width: 800px;
margin: 20px auto;
padding: 20px;
background: white;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.paper {
margin-bottom: 20px;
}
.paper a {
text-decoration: none;
color: #4CAF50;
font-weight: bold;
}
.paper a:hover {
text-decoration: underline;
}
.coming-soon {
color: #e74c3c;
font-size: 0.9em;
margin-left: 10px;
}
footer {
text-align: center;
padding: 10px 0;
background: #4CAF50;
color: white;
margin-top: 20px;
}
</style>
</head>
<body>
<header>
<h1>DeepSeek Papers</h1>
</header>
<div class="container">
<h2>DeepSeek Research Contributions</h2>
<p>Below is a list of significant papers by DeepSeek detailing advancements in large language models (LLMs). Each paper includes a brief description and highlights upcoming deep dives.</p>
<!-- Paper List -->
<div class="paper">
<a href="#">DeepSeekLLM: Scaling Open-Source Language Models with Longer-termism</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p><strong>Release Date:</strong> November 29, 2023<br>
This foundational paper explores scaling laws and the trade-offs between data and model size, establishing the groundwork for subsequent models.</p>
</div>
<div class="paper">
<a href="#">DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p><strong>Release Date:</strong> May 2024<br>
This paper introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing training costs by 42%.</p>
</div>
<div class="paper">
<a href="#">DeepSeek-V3 Technical Report</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p><strong>Release Date:</strong> December 2024<br>
This report discusses the scaling of sparse MoE networks to 671 billion parameters, utilizing mixed precision training and HPC co-design strategies.</p>
</div>
<div class="paper">
<a href="#">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p><strong>Release Date:</strong> January 20, 2025<br>
The R1 model enhances reasoning capabilities through large-scale reinforcement learning, competing directly with leading models like OpenAI's o1.</p>
</div>
<div class="paper">
<a href="#">DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p><strong>Release Date:</strong> April 2024<br>
This paper presents methods to improve mathematical reasoning in LLMs, introducing the Group Relative Policy Optimization (GRPO) algorithm.</p>
</div>
<div class="paper">
<a href="#">DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p>Focuses on enhancing theorem proving capabilities in language models using synthetic data for training.</p>
</div>
<div class="paper">
<a href="#">DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p>This paper details advancements in code-related tasks with an emphasis on open-source methodologies, improving upon earlier coding models.</p>
</div>
<div class="paper">
<a href="#">DeepSeekMoE</a>
<span class="coming-soon">[Deep Dive Coming Soon]</span>
<p>Discusses the integration and benefits of the Mixture-of-Experts approach within the DeepSeek framework.</p>
</div>
</div>
<footer>
&copy; 2025 DeepSeek Research. All rights reserved.
</footer>
</body>
</html>