|
import torch
|
|
from torch import nn
|
|
import math
|
|
|
|
|
|
from modules.wavenet import WN
|
|
from modules.commons import sequence_mask
|
|
|
|
from torch.nn.utils import weight_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import functional as F
|
|
|
|
|
|
def find_multiple(n: int, k: int) -> int:
|
|
if n % k == 0:
|
|
return n
|
|
return n + k - (n % k)
|
|
|
|
class AdaptiveLayerNorm(nn.Module):
|
|
r"""Adaptive Layer Normalization"""
|
|
|
|
def __init__(self, d_model, norm) -> None:
|
|
super(AdaptiveLayerNorm, self).__init__()
|
|
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
|
self.norm = norm
|
|
self.d_model = d_model
|
|
self.eps = self.norm.eps
|
|
|
|
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
|
if embedding is None:
|
|
return self.norm(input)
|
|
weight, bias = torch.split(
|
|
self.project_layer(embedding),
|
|
split_size_or_sections=self.d_model,
|
|
dim=-1,
|
|
)
|
|
return weight * self.norm(input) + bias
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
block_size: int = 2048
|
|
vocab_size: int = 32000
|
|
n_layer: int = 32
|
|
n_head: int = 32
|
|
dim: int = 4096
|
|
intermediate_size: int = None
|
|
n_local_heads: int = -1
|
|
head_dim: int = 64
|
|
rope_base: float = 10000
|
|
norm_eps: float = 1e-5
|
|
has_cross_attention: bool = False
|
|
context_dim: int = 0
|
|
uvit_skip_connection: bool = False
|
|
time_as_token: bool = False
|
|
|
|
def __post_init__(self):
|
|
if self.n_local_heads == -1:
|
|
self.n_local_heads = self.n_head
|
|
if self.intermediate_size is None:
|
|
hidden_dim = 4 * self.dim
|
|
n_hidden = int(2 * hidden_dim / 3)
|
|
self.intermediate_size = find_multiple(n_hidden, 256)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
|
|
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
|
|
self.freqs_cis: Optional[Tensor] = None
|
|
self.mask_cache: Optional[Tensor] = None
|
|
self.max_batch_size = -1
|
|
self.max_seq_length = -1
|
|
|
|
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=False):
|
|
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
|
return
|
|
head_dim = self.config.dim // self.config.n_head
|
|
max_seq_length = find_multiple(max_seq_length, 8)
|
|
self.max_seq_length = max_seq_length
|
|
self.max_batch_size = max_batch_size
|
|
dtype = self.norm.project_layer.weight.dtype
|
|
device = self.norm.project_layer.weight.device
|
|
|
|
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
|
|
self.config.rope_base, dtype).to(device)
|
|
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
|
|
self.use_kv_cache = use_kv_cache
|
|
self.uvit_skip_connection = self.config.uvit_skip_connection
|
|
if self.uvit_skip_connection:
|
|
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
|
|
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
|
|
else:
|
|
self.layers_emit_skip = []
|
|
self.layers_receive_skip = []
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
c: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
mask: Optional[Tensor] = None,
|
|
context: Optional[Tensor] = None,
|
|
context_input_pos: Optional[Tensor] = None,
|
|
cross_attention_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
assert self.freqs_cis is not None, "Caches must be initialized first"
|
|
if mask is None:
|
|
if not self.training and self.use_kv_cache:
|
|
mask = self.causal_mask[None, None, input_pos]
|
|
else:
|
|
mask = self.causal_mask[None, None, input_pos]
|
|
mask = mask[..., input_pos]
|
|
freqs_cis = self.freqs_cis[input_pos]
|
|
if context is not None:
|
|
context_freqs_cis = self.freqs_cis[context_input_pos]
|
|
else:
|
|
context_freqs_cis = None
|
|
skip_in_x_list = []
|
|
for i, layer in enumerate(self.layers):
|
|
if self.uvit_skip_connection and i in self.layers_receive_skip:
|
|
skip_in_x = skip_in_x_list.pop(-1)
|
|
else:
|
|
skip_in_x = None
|
|
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
|
|
if self.uvit_skip_connection and i in self.layers_emit_skip:
|
|
skip_in_x_list.append(x)
|
|
x = self.norm(x, c)
|
|
return x
|
|
|
|
@classmethod
|
|
def from_name(cls, name: str):
|
|
return cls(ModelArgs.from_name(name))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.attention = Attention(config)
|
|
self.feed_forward = FeedForward(config)
|
|
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
|
|
if config.has_cross_attention:
|
|
self.has_cross_attention = True
|
|
self.cross_attention = Attention(config, is_cross_attention=True)
|
|
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
else:
|
|
self.has_cross_attention = False
|
|
|
|
if config.uvit_skip_connection:
|
|
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
|
|
self.uvit_skip_connection = True
|
|
else:
|
|
self.uvit_skip_connection = False
|
|
|
|
self.time_as_token = config.time_as_token
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
c: Tensor,
|
|
input_pos: Tensor,
|
|
freqs_cis: Tensor,
|
|
mask: Tensor,
|
|
context: Optional[Tensor] = None,
|
|
context_freqs_cis: Optional[Tensor] = None,
|
|
cross_attention_mask: Optional[Tensor] = None,
|
|
skip_in_x: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
c = None if self.time_as_token else c
|
|
if self.uvit_skip_connection and skip_in_x is not None:
|
|
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
|
|
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
|
|
if self.has_cross_attention:
|
|
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
|
|
out = h + self.feed_forward(self.ffn_norm(h, c))
|
|
return out
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
|
|
super().__init__()
|
|
assert config.dim % config.n_head == 0
|
|
|
|
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
|
|
|
if is_cross_attention:
|
|
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
|
|
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
|
|
else:
|
|
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
|
|
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
|
|
self.kv_cache = None
|
|
|
|
self.n_head = config.n_head
|
|
self.head_dim = config.head_dim
|
|
self.n_local_heads = config.n_local_heads
|
|
self.dim = config.dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
freqs_cis: Tensor,
|
|
mask: Tensor,
|
|
input_pos: Optional[Tensor] = None,
|
|
context: Optional[Tensor] = None,
|
|
context_freqs_cis: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
kv_size = self.n_local_heads * self.head_dim
|
|
if context is None:
|
|
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
|
|
context_seqlen = seqlen
|
|
else:
|
|
q = self.wq(x)
|
|
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
|
|
context_seqlen = context.shape[1]
|
|
|
|
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
|
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
|
|
q = apply_rotary_emb(q, freqs_cis)
|
|
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
|
|
|
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
|
|
|
if self.kv_cache is not None:
|
|
k, v = self.kv_cache.update(input_pos, k, v)
|
|
|
|
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
|
|
|
|
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
|
|
|
|
y = self.wo(y)
|
|
return y
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
super().__init__()
|
|
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def precompute_freqs_cis(
|
|
seq_len: int, n_elem: int, base: int = 10000,
|
|
dtype: torch.dtype = torch.bfloat16
|
|
) -> Tensor:
|
|
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
|
t = torch.arange(seq_len, device=freqs.device)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
|
return cache.to(dtype=dtype)
|
|
|
|
|
|
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
|
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
|
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
|
x_out2 = torch.stack(
|
|
[
|
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
|
],
|
|
-1,
|
|
)
|
|
|
|
x_out2 = x_out2.flatten(3)
|
|
return x_out2.type_as(x)
|
|
|
|
|
|
def modulate(x, shift, scale):
|
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
def __init__(self, hidden_size, frequency_embedding_size=256):
|
|
super().__init__()
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
|
nn.SiLU(),
|
|
nn.Linear(hidden_size, hidden_size, bias=True),
|
|
)
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.max_period = 10000
|
|
self.scale = 1000
|
|
|
|
half = frequency_embedding_size // 2
|
|
freqs = torch.exp(
|
|
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
|
)
|
|
self.register_buffer("freqs", freqs)
|
|
|
|
def timestep_embedding(self, t):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
:param t: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
:param dim: the dimension of the output.
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
:return: an (N, D) Tensor of positional embeddings.
|
|
"""
|
|
|
|
|
|
args = self.scale * t[:, None].float() * self.freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if self.frequency_embedding_size % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
return embedding
|
|
|
|
def forward(self, t):
|
|
t_freq = self.timestep_embedding(t)
|
|
t_emb = self.mlp(t_freq)
|
|
return t_emb
|
|
|
|
|
|
class StyleEmbedder(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, input_size, hidden_size, dropout_prob):
|
|
super().__init__()
|
|
use_cfg_embedding = dropout_prob > 0
|
|
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
|
|
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
|
|
self.input_size = input_size
|
|
self.dropout_prob = dropout_prob
|
|
|
|
def forward(self, labels, train, force_drop_ids=None):
|
|
use_dropout = self.dropout_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
labels = self.token_drop(labels, force_drop_ids)
|
|
else:
|
|
labels = self.style_in(labels)
|
|
embeddings = labels
|
|
return embeddings
|
|
|
|
class FinalLayer(nn.Module):
|
|
"""
|
|
The final layer of DiT.
|
|
"""
|
|
def __init__(self, hidden_size, patch_size, out_channels):
|
|
super().__init__()
|
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
|
)
|
|
|
|
def forward(self, x, c):
|
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
class DiT(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
args
|
|
):
|
|
super(DiT, self).__init__()
|
|
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
|
|
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
|
|
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
|
|
model_args = ModelArgs(
|
|
block_size=16384,
|
|
n_layer=args.DiT.depth,
|
|
n_head=args.DiT.num_heads,
|
|
dim=args.DiT.hidden_dim,
|
|
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
|
|
vocab_size=1024,
|
|
uvit_skip_connection=self.uvit_skip_connection,
|
|
time_as_token=self.time_as_token,
|
|
)
|
|
self.transformer = Transformer(model_args)
|
|
self.in_channels = args.DiT.in_channels
|
|
self.out_channels = args.DiT.in_channels
|
|
self.num_heads = args.DiT.num_heads
|
|
|
|
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
|
|
|
|
self.content_type = args.DiT.content_type
|
|
self.content_codebook_size = args.DiT.content_codebook_size
|
|
self.content_dim = args.DiT.content_dim
|
|
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim)
|
|
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True)
|
|
|
|
self.is_causal = args.DiT.is_causal
|
|
|
|
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
|
|
|
|
input_pos = torch.arange(16384)
|
|
self.register_buffer("input_pos", input_pos)
|
|
|
|
self.final_layer_type = args.DiT.final_layer_type
|
|
if self.final_layer_type == 'wavenet':
|
|
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
|
|
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
|
|
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
|
|
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
|
|
kernel_size=args.wavenet.kernel_size,
|
|
dilation_rate=args.wavenet.dilation_rate,
|
|
n_layers=args.wavenet.num_layers,
|
|
gin_channels=args.wavenet.hidden_dim,
|
|
p_dropout=args.wavenet.p_dropout,
|
|
causal=False)
|
|
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
|
|
self.res_projection = nn.Linear(args.DiT.hidden_dim,
|
|
args.wavenet.hidden_dim)
|
|
self.wavenet_style_condition = args.wavenet.style_condition
|
|
assert args.DiT.style_condition == args.wavenet.style_condition
|
|
else:
|
|
self.final_mlp = nn.Sequential(
|
|
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
|
|
nn.SiLU(),
|
|
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
|
|
)
|
|
self.transformer_style_condition = args.DiT.style_condition
|
|
|
|
|
|
self.class_dropout_prob = args.DiT.class_dropout_prob
|
|
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
|
|
|
|
self.long_skip_connection = args.DiT.long_skip_connection
|
|
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
|
|
|
|
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
|
|
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
|
|
args.DiT.hidden_dim)
|
|
if self.style_as_token:
|
|
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
|
|
|
|
def setup_caches(self, max_batch_size, max_seq_length):
|
|
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
|
|
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
|
|
class_dropout = False
|
|
if self.training and torch.rand(1) < self.class_dropout_prob:
|
|
class_dropout = True
|
|
if not self.training and mask_content:
|
|
class_dropout = True
|
|
|
|
cond_in_module = self.cond_projection
|
|
|
|
B, _, T = x.size()
|
|
|
|
|
|
t1 = self.t_embedder(t)
|
|
|
|
cond = cond_in_module(cond)
|
|
|
|
x = x.transpose(1, 2)
|
|
prompt_x = prompt_x.transpose(1, 2)
|
|
|
|
x_in = torch.cat([x, prompt_x, cond], dim=-1)
|
|
if self.transformer_style_condition and not self.style_as_token:
|
|
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1)
|
|
if class_dropout:
|
|
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0
|
|
x_in = self.cond_x_merge_linear(x_in)
|
|
|
|
if self.style_as_token:
|
|
style = self.style_in(style)
|
|
style = torch.zeros_like(style) if class_dropout else style
|
|
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
|
|
if self.time_as_token:
|
|
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
|
|
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1)
|
|
input_pos = self.input_pos[:x_in.size(1)]
|
|
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None
|
|
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded)
|
|
x_res = x_res[:, 1:] if self.time_as_token else x_res
|
|
x_res = x_res[:, 1:] if self.style_as_token else x_res
|
|
if self.long_skip_connection:
|
|
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
|
|
if self.final_layer_type == 'wavenet':
|
|
x = self.conv1(x_res)
|
|
x = x.transpose(1, 2)
|
|
t2 = self.t_embedder2(t)
|
|
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
|
|
x_res)
|
|
x = self.final_layer(x, t1).transpose(1, 2)
|
|
x = self.conv2(x)
|
|
else:
|
|
x = self.final_mlp(x_res)
|
|
x = x.transpose(1, 2)
|
|
return x |