Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,40 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
# Model yükleme (hafif!)
|
6 |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
7 |
-
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def generate_question(memory):
|
12 |
-
prompt = f"
|
|
|
|
|
13 |
|
14 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
15 |
-
|
16 |
-
result = tokenizer.decode(
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
return
|
21 |
|
22 |
# Gradio UI
|
23 |
iface = gr.Interface(
|
24 |
fn=generate_question,
|
25 |
inputs=gr.Textbox(label="Your Memory"),
|
26 |
outputs=gr.Textbox(label="Generated Question"),
|
27 |
-
title="
|
28 |
)
|
29 |
|
30 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
+
import json
|
5 |
|
|
|
6 |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
9 |
|
10 |
+
# Örnek veri setini yükle
|
11 |
+
with open("memory_questions.json", "r") as f:
|
12 |
+
memory_data = json.load(f)
|
13 |
+
|
14 |
+
# İlk 3-4 örnekten prompt hazırla
|
15 |
+
few_shot_examples = "\n".join(
|
16 |
+
[f"Memory: {item['description']}\nQuestion: {item['question']}" for item in memory_data[:5]]
|
17 |
+
)
|
18 |
+
|
19 |
def generate_question(memory):
|
20 |
+
prompt = f"""{few_shot_examples}
|
21 |
+
Memory: {memory}
|
22 |
+
Question:"""
|
23 |
|
24 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
25 |
+
output = model.generate(input_ids, max_new_tokens=50, do_sample=False)
|
26 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
27 |
|
28 |
+
# Çıktıdan yalnızca son soruyu ayrıştır
|
29 |
+
lines = result.strip().split("Question:")
|
30 |
+
return lines[-1].strip() if len(lines) > 1 else result.strip()
|
31 |
|
32 |
# Gradio UI
|
33 |
iface = gr.Interface(
|
34 |
fn=generate_question,
|
35 |
inputs=gr.Textbox(label="Your Memory"),
|
36 |
outputs=gr.Textbox(label="Generated Question"),
|
37 |
+
title="Memory-Aware Question Generator (TinyLLaMA)"
|
38 |
)
|
39 |
|
40 |
iface.launch()
|