Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
# Semantik model | |
embedder = SentenceTransformer("paraphrase-MiniLM-L3-v2") | |
# Veri yükle | |
with open("memory_questions.json", "r") as f: | |
memory_data = json.load(f) | |
memory_texts = [item['description'] for item in memory_data] | |
memory_embeddings = embedder.encode(memory_texts) | |
# Yalnızca eşleşen soruyu döndür | |
def generate_question(user_memory): | |
user_embedding = embedder.encode([user_memory]) | |
similarities = cosine_similarity(user_embedding, memory_embeddings)[0] | |
best_match_index = np.argmax(similarities) | |
return memory_data[best_match_index]['question'] | |
# Arayüz | |
iface = gr.Interface( | |
fn=generate_question, | |
inputs=gr.Textbox(label="Your Memory"), | |
outputs=gr.Textbox(label="Matched Question"), | |
title="MemoRease – Smart Matched Question (No Hallucination)", | |
description="Enter a memory. You'll get the most relevant pre-written question from your dataset." | |
) | |
iface.launch() | |