File size: 8,085 Bytes
ec1b552
 
 
 
 
 
92bf0a5
740d91a
ec1b552
 
 
 
 
4905514
ec1b552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e7b6b
 
ec1b552
7fec156
db371b0
ec1b552
db371b0
ec1b552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013fddc
ec1b552
8091bbd
 
ec1b552
89006af
 
7fec156
db371b0
89006af
 
 
ec1b552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d400133
1b761b3
 
ec1b552
 
d400133
 
1b761b3
ec1b552
 
 
d400133
 
 
 
 
 
 
 
 
 
 
1b761b3
d400133
 
1b761b3
 
 
 
 
 
 
 
 
 
 
 
 
d400133
1b761b3
d400133
 
1b761b3
 
 
 
 
 
 
 
ed1690e
 
1b761b3
 
 
 
 
 
 
d400133
 
1b761b3
 
 
d400133
1b761b3
 
 
ed1690e
1b761b3
 
 
 
ec1b552
 
 
 
2d99709
ec1b552
 
 
 
d400133
eca64a5
 
740d91a
eca64a5
 
740d91a
eca64a5
21e7b6b
eca64a5
21e7b6b
eca64a5
21e7b6b
eca64a5
21e7b6b
 
eca64a5
21e7b6b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import subprocess
import os
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from starlette.middleware.sessions import SessionMiddleware


# Configure logging
logging.basicConfig(level=logging.INFO)

# Path to the cloned repository
BITNET_REPO_PATH = "/home/user/app/BitNet"
SETUP_SCRIPT = os.path.join(BITNET_REPO_PATH, "setup_env.py")
INFERENCE_SCRIPT = os.path.join(BITNET_REPO_PATH, "run_inference.py")

# Function to set up the environment by running setup.py
def setup_bitnet(model_name):
    try:
        result = subprocess.run(
            f"python {SETUP_SCRIPT} --hf-repo {model_name} -q i2_s",
            shell=True,
            cwd=BITNET_REPO_PATH,
            capture_output=True,
            text=True
        )
        if result.returncode == 0:
            return "Setup completed successfully!"
        else:
            return f"Error in setup: {result.stderr}"
    except Exception as e:
        return str(e)

# Function to run inference using the `run_inference.py` file
def run_inference(model_name, input_text, num_tokens=6):
    try:
        # Call the `run_inference.py` script with the model and input
        
        model_name = model_name.split("/")[1]
        start_time = time.time()
        if input_text is None or input_text == "": 
            return "Please provide an input text for the model"
        result = subprocess.run(
            f"python run_inference.py -m models/{model_name}/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
            shell=True,
            cwd=BITNET_REPO_PATH,
            capture_output=True,
            text=True
        )
        end_time = time.time()
        
        if result.returncode == 0:
            inference_time = round(end_time - start_time, 2)
            return result.stdout, f"Inference took {inference_time} seconds."
        else:
            return f"Error during inference: {result.stderr}", None
    except Exception as e:
        return str(e), None

def run_transformers(model_name, input_text, num_tokens):

    # if oauth_token is None : 
    #     return "Error : To Compare please login to your HF account and make sure you have access to the used Llama models"
    # Load the model and tokenizer dynamically if needed (commented out for performance)
    # if model_name=="TinyLlama/TinyLlama-1.1B-Chat-v1.0" : 
    print(input_text)
    if input_text is None or input_text == "": 
        return "Please provide an input text for the model", None
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Encode the input text
    input_ids = tokenizer.encode(input_text, return_tensors="pt")

    # Start time for inference
    start_time = time.time()

    # Generate output with the specified number of tokens
    output = model.generate(input_ids, max_length=len(input_ids[0]) + num_tokens, num_return_sequences=1)

    # Calculate inference time
    inference_time = time.time() - start_time

    # Decode the generated output
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return generated_text, f"{inference_time:.2f} seconds"

# Gradio Interface
def interface():
    with gr.Blocks(theme=gr.themes.Ocean()) as demo:

        # Header
        gr.Markdown(
            """
            <h1 style="text-align: center; color: #7AB8E5;">BitNet.cpp Speed Demonstration 💻</h1>
            <p style="text-align: center; color: #6A1B9A;">Compare the speed and performance of BitNet with popular Transformer models.</p>
            """,
            elem_id="header"
        )

        # Instructions
        gr.Markdown(
            """
            ### Instructions for Using the BitNet.cpp Speed Demonstration
            1. **Set Up Your Project**: Begin by selecting the model you wish to use. Please note that this process may take a few minutes to complete.
            2. **Select Token Count**: Choose the number of tokens you want to generate for your inference.
            3. **Input Your Text**: Enter the text you wish to analyze, then compare the performance of BitNet with popular Transformer models.
            """,
            elem_id="instructions"
        )

        # Model Selection and Setup
        with gr.Column(elem_id="container"):
            gr.Markdown("<h2 style='color: #5CA2D3; text-align: center;'>Model Selection and Setup</h2>")
            with gr.Row():
                model_dropdown = gr.Dropdown(
                    label="Select Model",
                    choices=[
                        "HF1BitLLM/Llama3-8B-1.58-100B-tokens", 
                        "1bitLLM/bitnet_b1_58-3B", 
                        "1bitLLM/bitnet_b1_58-large"
                    ],
                    value="HF1BitLLM/Llama3-8B-1.58-100B-tokens",
                    interactive=True
                )
                setup_button = gr.Button("Run Setup")
                setup_status = gr.Textbox(label="Setup Status", interactive=False, placeholder="Setup status will appear here...")
                
        # Inference Section
        with gr.Column(elem_id="container"):
            gr.Markdown("<h2 style='color: #5CA2D3; text-align: center;'>BitNet Inference</h2>")
            with gr.Row():
                num_tokens = gr.Slider(
                    minimum=1, maximum=100, 
                    label="Number of Tokens to Generate", 
                    value=50, step=1
                )
                input_text = gr.Textbox(
                    label="Input Text", 
                    placeholder="Enter your input text here...",
                    value="Who is Zeus?"
                )
            with gr.Row():
                infer_button = gr.Button("Run Inference")
                result_output = gr.Textbox(label="Output", interactive=False, placeholder="Inference output will appear here...")
                time_output = gr.Textbox(label="Inference Time", interactive=False, placeholder="Inference time will appear here...")

        # Comparison with Transformers Section
        with gr.Column(elem_id="container"):
            gr.Markdown("<h2 style='color: #5CA2D3; text-align: center;'>Compare with Transformers</h2>")
            with gr.Row():
                transformer_model_dropdown = gr.Dropdown(
                    label="Select Transformers Model",
                    choices=["TinyLlama/TinyLlama_v1.1"],
                    value="TinyLlama/TinyLlama_v1.1",
                    interactive=True
                )
                input_text_tr = gr.Textbox(label="Input Text", placeholder="Enter your input text here...", value="Who is Zeus?")
            with gr.Row():
                compare_button = gr.Button("Run Transformers Inference")
                transformer_result_output = gr.Textbox(label="Transformers Output", interactive=False, placeholder="Transformers output will appear here...")
                transformer_time_output = gr.Textbox(label="Transformers Inference Time", interactive=False, placeholder="Transformers inference time will appear here...")

        # Actions
        setup_button.click(setup_bitnet, inputs=model_dropdown, outputs=setup_status)
        infer_button.click(run_inference, inputs=[model_dropdown, input_text, num_tokens], outputs=[result_output, time_output])
        compare_button.click(run_transformers, inputs=[transformer_model_dropdown, input_text_tr, num_tokens], outputs=[transformer_result_output, transformer_time_output])

    return demo

demo = interface()

# # Access FastAPI app instance from Gradio
# fastapi_app = demo.app  

# # Add SessionMiddleware to enable session management
# fastapi_app.add_middleware(SessionMiddleware, secret_key="secret_key")  # Use a secure, random secret key

# # Launch the app
demo.launch()

# from fastapi import FastAPI

# app = FastAPI()

# # Add SessionMiddleware for sessions handling
# app.add_middleware(SessionMiddleware, secret_key="secure_secret_key")

# # Mount Gradio app to FastAPI at the root
# app.mount("/", demo)