Spaces:
Runtime error
Runtime error
basic skeleton
Browse files
app.py
CHANGED
@@ -1,4 +1,50 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
1 |
import streamlit as st
|
2 |
+
import transformers as tf
|
3 |
+
|
4 |
+
@st.experimental_singleton(show_spinner=False)
|
5 |
+
def load_model(username, prefix, model_name):
|
6 |
+
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}')
|
7 |
+
return p
|
8 |
+
|
9 |
+
USERNAME = 'maxspad'
|
10 |
+
PREFIX = 'nlp-qual'
|
11 |
+
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
|
12 |
+
n_models = float(len(models_to_load))
|
13 |
+
|
14 |
+
models = {}
|
15 |
+
|
16 |
+
lc_placeholder = st.empty()
|
17 |
+
loader_container = lc_placeholder.container()
|
18 |
+
loader_container.caption('Loading models... please wait...')
|
19 |
+
pbar = loader_container.progress(0.0)
|
20 |
+
for i, mn in enumerate(models_to_load):
|
21 |
+
pbar.progress((i+1.0) / n_models)
|
22 |
+
models[mn] = load_model(USERNAME, PREFIX, mn)
|
23 |
+
lc_placeholder.empty()
|
24 |
+
|
25 |
+
text = st.text_area('Type your stuff')
|
26 |
+
|
27 |
+
denoms = ['5','3']
|
28 |
+
for mn in models_to_load:
|
29 |
+
st.header(mn)
|
30 |
+
cols = st.columns(2)
|
31 |
+
res = models[mn](text)[0]
|
32 |
+
|
33 |
+
if mn == 'qual':
|
34 |
+
cols[0].metric('Score', f"{res['label'].split('_')[1]}/5")
|
35 |
+
elif mn == 'q1':
|
36 |
+
cols[0].metric('Score', f"{res['label'].split('_')[1]}/3")
|
37 |
+
elif mn == 'q2i':
|
38 |
+
if res['label'] == 'LABEL_0':
|
39 |
+
cols[0].metric('Suggestion for improvement?', 'Yes')
|
40 |
+
else:
|
41 |
+
cols[0].metric('Suggestion for improvement?', 'No')
|
42 |
+
elif mn == 'q3i':
|
43 |
+
if res['label'] == 'LABEL_0':
|
44 |
+
cols[0].metric('Suggestion linked?', 'Yes')
|
45 |
+
else:
|
46 |
+
cols[0].metric('Suggestion linked?', 'No')
|
47 |
+
|
48 |
+
cols[1].caption('Confidence')
|
49 |
+
cols[1].progress(res['score'])
|
50 |
|
|
|
|