File size: 16,095 Bytes
cf345e6
b17912c
cf345e6
f61fca1
cf345e6
3b2e319
 
 
b17912c
cf345e6
 
 
 
 
b17912c
cf345e6
 
 
 
 
 
3b2e319
cf345e6
 
 
 
 
bbd155d
cf345e6
 
 
 
 
 
 
 
f61fca1
 
43084dd
3b2e319
 
 
f61fca1
 
 
 
 
 
 
 
 
3b2e319
 
1ead6f2
3b2e319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd155d
 
 
 
 
 
 
 
 
 
 
 
 
f61fca1
bbd155d
f61fca1
3b2e319
 
 
 
43084dd
 
3b2e319
 
 
 
 
 
f61fca1
 
43084dd
ca11d33
43084dd
 
 
3b2e319
f61fca1
cf345e6
43084dd
cf345e6
bbd155d
 
9d8d75b
 
 
bbd155d
 
43084dd
cf345e6
 
 
 
 
 
 
 
 
 
 
f735e48
cf345e6
 
 
 
 
d3f7898
cf345e6
 
 
 
 
f735e48
 
cf345e6
bbd155d
 
 
f735e48
 
 
bbd155d
cf345e6
 
 
d3f7898
bbd155d
cf345e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd155d
cf345e6
 
 
 
 
 
bbd155d
 
cf345e6
 
 
 
d3f7898
cf345e6
 
bbd155d
cf345e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f7898
cf345e6
 
 
 
 
 
f735e48
cf345e6
 
 
f61fca1
 
 
 
 
 
 
cf345e6
 
 
43084dd
9a065a7
cf345e6
 
10b0bca
cf345e6
 
 
 
 
bbd155d
cf345e6
 
 
 
 
 
 
 
f61fca1
 
cf345e6
f61fca1
10b0bca
 
cf345e6
 
 
 
d3f7898
 
bbd155d
 
 
 
cf345e6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
import gradio as gr
import spaces
import random
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler

# Define model options
MODEL_OPTIONS = {
    "Wan2.1-T2V-1.3B": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
    "Wan2.1-T2V-14B": "Wan-AI/Wan2.1-T2V-14B-Diffusers"
}

# Define scheduler options
SCHEDULER_OPTIONS = {
    "UniPCMultistepScheduler": UniPCMultistepScheduler,
    "FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
}

@spaces.GPU(duration=300)
def generate_video(
    model_choice,
    prompt,
    negative_prompt,
    lora_id,
    lora_weight_name,
    lora_scale,
    scheduler_type,
    flow_shift,
    height,
    width,
    num_frames,
    guidance_scale,
    num_inference_steps,
    output_fps,
    seed
):
    # Get model ID from selection
    model_id = MODEL_OPTIONS[model_choice]
    
    # Set seed for reproducibility
    if seed == -1 or seed is None or seed == "":
        seed = random.randint(0, 2147483647)
    else:
        seed = int(seed)
    
    # Set the seed
    torch.manual_seed(seed)
    
    # Load model
    vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
    pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
    
    # Set scheduler
    if scheduler_type == "UniPCMultistepScheduler":
        pipe.scheduler = UniPCMultistepScheduler.from_config(
            pipe.scheduler.config,
            flow_shift=flow_shift
        )
    else:
        pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
    
    # Move to GPU
    pipe.to("cuda")
    
    # Load LoRA weights if provided
    if lora_id and lora_id.strip():
        try:
            # If a specific weight name is provided, use it
            if lora_weight_name and lora_weight_name.strip():
                pipe.load_lora_weights(lora_id, weight_name=lora_weight_name)
            else:
                pipe.load_lora_weights(lora_id)
            
            # Set lora scale if applicable
            if hasattr(pipe, "set_adapters_scale") and lora_scale is not None:
                pipe.set_adapters_scale(lora_scale)
        except ValueError as e:
            # Return informative error if there are multiple safetensors and no weight name
            if "more than one weights file" in str(e):
                return f"Error: The repository '{lora_id}' contains multiple safetensors files. Please specify a weight name using the 'LoRA Weight Name' field.", seed
            else:
                return f"Error loading LoRA weights: {str(e)}", seed
    
    # Enable CPU offload for low VRAM
    pipe.enable_model_cpu_offload()
    
    # Generate video
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_frames=num_frames,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator("cuda").manual_seed(seed)
    ).frames[0]
    
    # Export to video
    temp_file = "output.mp4"
    export_to_video(output, temp_file, fps=output_fps)
    
    return temp_file, seed

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.HTML("""
    <p align="center">
        <svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
            <path d='M195.43 109.93a.18.18 0 0 1-.27-.03l-.17-.26a.13.12-43.2 0 1 .01-.16q21.87-21.98 42.02-37.95c17.57-13.93 36.61-26.36 57.23-34.01q13.26-4.92 24.23-4.1c10.91.81 18.01 8.05 19.12 18.82.79 7.76-.64 15.73-3.29 23.37q-5.87 16.92-15.46 32.47a1.05 1.02-40.3 0 0-.09.91q11.79 32.3 2.48 63.6c-13.06 43.95-53.78 72.83-99.49 71.06q-16.32-.64-30.92-6.27a1.88 1.88 0 0 0-1.65.15c-12.54 7.69-26.93 14.55-41.16 17.68-4.99 1.1-9.54.6-16.14.62a6.31 6.04 50.1 0 1-1.35-.15c-19.69-4.51-18.03-25.43-12.71-40.65q5.95-17.05 15.9-32.34a.89.88 50.1 0 0 .07-.82c-13.76-32.93-7.8-71.64 14.32-99.05q20.75-25.73 51.75-33.99 29.88-7.96 59.38 2.25a.18.18 0 0 1 .04.32l-11.17 7.52a1.18 1.17-55 0 1-.93.17q-26.82-6.3-51.8 2.83c-24.65 9.02-43.94 28.53-52.73 53.27q-8.3 23.33-2.99 48.49.7 3.32 3.15 10.35c7.87 22.55 24.1 40.02 45.62 50.35a.52.51 43.2 0 1 .03.91l-10.31 5.96a.7.68-44.3 0 1-.69 0q-27.53-15.57-41.3-43.86a.1.09-44.1 0 0-.17 0q-6.59 11.46-11.16 23.67c-4.39 11.73-11.35 38.04 10.45 38.5q6.38.13 11.55-1.22c17.2-4.51 32.86-13.33 47.66-23.11q24.23-16.04 49.48-39.51c28.57-26.55 55.11-56.92 74.11-90.87q5.96-10.65 10.32-23.77c2.38-7.15 5.16-20.81-.67-27.03q-3.67-3.92-8.08-4.48-10.87-1.39-22.3 2.5-11.06 3.77-18.33 7.43c-30.93 15.54-58.11 36.9-83.59 60.43zm100.11-36.16q10.18 9.98 17.31 22.67a.6.59 46.1 0 1-.01.59l-6.17 10.69a.34.33-42.8 0 1-.59-.02q-7.06-14.92-18.34-25.98-11.28-11.06-26.34-17.82a.34.33-48.4 0 1-.03-.59l10.56-6.38a.6.59 42.7 0 1 .59-.02q12.83 6.88 23.02 16.86zm430.69 78.36h10a1.13 1.12-74.2 0 0 .96-.54q11.1-17.8 23.93-38.19 1.8-2.85 5.39-3.1 3.42-.23 11.73-.11 1.88.02 2.61.66a2.23 2.08-54 0 1 .34 2.77q-12.01 19.41-29.2 46.98a.86.85 45.5 0 0 0 .93q12.8 20.23 28.66 46.12.22.36.29 1.09a1.98 1.97 85.7 0 1-1.85 2.16q-7.51.45-13.91-.05c-2.52-.2-4.25-2.09-5.57-4.24q-8.26-13.5-22.19-36.26a.74.72-15 0 0-.63-.35H726.2a.62.61 0 0 0-.62.61q-.03 31.31.02 35.17.07 5.25-5.02 5.31-7.87.1-10.26-.19-3.72-.45-3.71-4.69.05-35.54-.02-135.71c0-3.87.67-6.1 4.77-6.12q7.55-.05 10.37.06c3.4.13 3.94 3.29 3.92 6.34q-.22 43.68-.02 80.75a.6.6 0 0 0 .6.6zM191.9 74.2l1.52.2a.33.33 0 0 1 0 .65l-1.52.22a.33.33 0 0 0-.28.29l-.2 1.52a.33.33 0 0 1-.65 0l-.22-1.52a.33.33 0 0 0-.29-.28l-1.52-.2a.33.33 0 0 1 0-.65l1.52-.22a.33.33 0 0 0 .28-.29l.2-1.52a.33.33 0 0 1 .65 0l.22 1.52a.33.33 0 0 0 .29.28zm64.12 2.96l2.78.37a.33.33 0 0 1 0 .65l-2.78.39a.33.33 0 0 0-.28.29l-.37 2.78a.33.33 0 0 1-.65 0l-.39-2.78a.33.33 0 0 0-.29-.28l-2.78-.37a.33.33 0 0 1 0-.65l2.78-.39a.33.33 0 0 0 .28-.29l.37-2.78a.33.33 0 0 1 .65 0l.39 2.78a.33.33 0 0 0 .29.28zm150.31 27.5q-.37 2.75-.37 5.59.1 55.28.07 95.29-.01 5.69-4.97 5.57-4.23-.1-9.06-.04-4.92.06-4.92-4.56-.03-47.02-.01-122.76c0-4.45 2.16-5.1 6.27-5.1q17.99.04 19.41.04c4.14-.01 5.19 2.26 6.29 6.06q6.68 23.18 28.31 98.03a.22.22 0 0 0 .42-.01q26.48-97.12 26.96-99.03 1.26-5.01 5.72-5.05 9.8-.09 22.27.08c3.29.04 3.71 3.1 3.7 5.88q-.07 58.05-.18 118.23c-.01 4.45.51 7.92-4.69 8.13q-3.32.14-7.06.02c-5.17-.17-7.18.03-7.18-6.18q.01-66.62.01-100.28a.141.141 0 0 0-.28-.04q-20.97 79.04-26.98 101.79-1.27 4.8-5.99 4.76-4.96-.03-13.08-.01c-4.08.01-5.44-1.81-6.54-5.76q-17.37-62.23-27.98-100.66a.07.07 0 0 0-.14.01zm-172.34 1.26l2.49.36a.32.32 0 0 1 0 .63l-2.49.37a.32.32 0 0 0-.27.27l-.36 2.49a.32.32 0 0 1-.63 0l-.37-2.49a.32.32 0 0 0-.27-.27l-2.49-.36a.32.32 0 0 1 0-.63l2.49-.37a.32.32 0 0 0 .27-.27l.36-2.49a.32.32 0 0 1 .63 0l.37 2.49a.32.32 0 0 0 .27.27zm46.8 2.66l2.5.41a.34.34 0 0 1 0 .67l-2.5.4a.34.34 0 0 0-.28.28l-.41 2.5a.34.34 0 0 1-.67 0l-.4-2.5a.34.34 0 0 0-.28-.28l-2.5-.41a.34.34 0 0 1 0-.67l2.5-.4a.34.34 0 0 0 .28-.28l.41-2.5a.34.34 0 0 1 .67 0l.4 2.5a.34.34 0 0 0 .28.28zm311.55 38.61q.18-12.55-.16-15.38c-.44-3.69-4.05-3.64-6.93-3.64q-18.53.03-52.88-.01c-3.01 0-3.94-2.46-3.95-5.32q-.01-5.13.04-8.35.08-4.18 4.29-4.26 5.99-.11 59.86-.05c13.05.02 18.7 5.13 18.7 18.33q.01 61.89.01 63.24c.03 15.73-6.4 19.32-21.07 19.32q-30.49.01-43.5-.02c-14.08-.04-20.24-3.83-20.35-18.8q-.12-16.77.08-27.74c.21-12.16 6.75-16.58 18.27-16.58q22.02.01 46.85-.01a.74.74 0 0 0 .74-.73zm-.66 18.75q-26.48-.05-41.68.04-4.64.03-4.77 4.52-.22 8.08-.06 16.74c.12 6.3 2.92 5.93 8.53 5.94q14.25.01 34.08-.03c4.89-.02 4.57-4.12 4.6-8.32q.08-11.72-.06-18.26a.65.64 89.1 0 0-.64-.63zm45.34 45.09c-2.82.02-4.77-1.44-4.77-4.22q-.01-73.72.01-78.31c.05-12.96 5.29-18.22 18.24-18.3q11.13-.06 38.25-.02 4.76.01 4.86 4.11.13 4.95.08 8.97c-.05 3.99-1.85 4.93-5.85 4.92q-24.69-.01-26.97 0c-5.43 0-9.69-.88-9.69 5.79q-.01 66 .02 70.71.02 3.45-.84 4.58-1.47 1.96-4.11 1.92-9.21-.15-9.23-.15zm200.71-17.86q16.73 0 18.8-.04c5.15-.13 4.81-3.81 4.8-8.15q-.01-10.05.01-70.24 0-4.51 4.92-4.56 7.92-.08 10 .09 3.9.31 3.9 4.48.02 60.37-.01 77.78c-.02 15.09-6.99 18.68-20.65 18.54q-.42 0-21.77 0-21.35 0-21.77 0c-13.66.14-20.63-3.45-20.65-18.54q-.03-17.41-.01-77.78 0-4.17 3.9-4.48 2.08-.17 10-.09 4.92.05 4.92 4.56.02 60.19.01 70.24c-.01 4.34-.35 8.02 4.79 8.14q2.08.05 18.81.05zm63.52 13.64q-.01-73.72.01-78.31c.05-12.96 5.29-18.22 18.24-18.3q11.13-.06 38.25-.02 4.76.01 4.86 4.11.13 4.95.08 8.97c-.05 3.99-1.85 4.93-5.85 4.92q-24.69-.01-26.97 0c-5.43 0-9.69-.88-9.69 5.79q-.01 66 .02 70.71.02 3.45-.84 4.58-1.47 1.96-4.11 1.92-9.21-.15-9.23-.15c-2.82.02-4.77-1.44-4.77-4.22zm109.52-25.57q18.81-60.07 20.5-65.73 1.57-5.27 6.17-5.34 3.67-.05 10.57.07c2.6.05 3.39 2.42 2.65 4.66q-11.68 35.64-41.85 128.15-1.51 4.61-6.26 4.65-4.38.03-7.66-.07c-3.83-.12-3.5-3.08-2.61-6.07q3.74-12.68 8.78-29.76a1.97 1.91-47.2 0 0-.03-1.2q-19.47-53.62-34.46-94.88c-.96-2.65-1.38-5.23 2.18-5.46q1.66-.11 11.3-.09 4.8 0 6.58 4.96 13.98 38.91 23.84 66.12a.16.16 0 0 0 .3-.01zm-767.05-7.85q-.03-28.67.01-36.09.03-4-1.39-6.63c-2.4-4.47-7.99-5.48-11.98-2.79q-4.8 3.23-4.86 9.16-.17 16.69-.02 24.3a.47.47 0 0 1-.47.48h-10.36a.46.46 0 0 1-.46-.46q.02-21.54 0-23.86-.03-2.66-.94-5.2c-2.63-7.33-11.73-8.07-15.95-1.8q-1.99 2.96-1.98 7.75.05 21.93.01 22.99a.59.58-89 0 1-.58.57h-10.14a.57.57 0 0 1-.57-.57v-43.73a1.04 1.04 0 0 1 1.04-1.04h8.41a1.25 1.24-2.5 0 1 1.24 1.13l.3 3.59a.27.27 0 0 0 .44.19q.06-.06 1.28-1.44c2.92-3.32 7.69-4.52 12.01-4.15q8.1.68 11.68 7.78a.37.37 0 0 0 .64.03c4.8-7.6 13.82-9.19 22.01-6.61 8.67 2.72 11.91 11.02 11.96 19.52q.07 14.44.05 24.75a1.29 1.26 66.4 0 1-.32.85l-10.44 11.52a.36.36 0 0 1-.62-.24zm-87.22-51.13l1.95.24a.34.34 0 0 1 0 .67l-1.96.22a.34.34 0 0 0-.3.3l-.24 1.95a.34.34 0 0 1-.67 0l-.22-1.96a.34.34 0 0 0-.3-.3l-1.95-.24a.34.34 0 0 1 0-.67l1.96-.22a.34.34 0 0 0 .3-.3l.24-1.95a.34.34 0 0 1 .67 0l.22 1.96a.34.34 0 0 0 .3.3zm13.88 41.55q.18 0 .43.34a.87.82 79.1 0 0 .45.33l.6.17a.362.362 0 0 1-.14.71q-.38-.05-.48-.08-.04-.02-.4.44-.26.33-.45.33-.19 0-.45-.32-.37-.46-.41-.44-.1.03-.48.09a.363.363 0 0 1-.15-.71l.6-.18a.87.82-79.8 0 0 .45-.33q.24-.35.43-.35zm25.81 35.05q.01.16-.38.69a.6.59 33.3 0 1-.79.16q-1.23-.74-1.23-.8 0-.05 1.19-.85a.6.59-36.1 0 1 .79.12q.42.51.42.68z' fill="#100c6d" />
        </svg>
    </p>
    """)
    gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA")
    
    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                choices=list(MODEL_OPTIONS.keys()),
                value="Wan2.1-T2V-1.3B",
                label="Model"
            )
            
            prompt = gr.Textbox(
                label="Prompt",
                value="",
                lines=3
            )
            
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿",
                lines=3
            )
            
            with gr.Row():
                lora_id = gr.Textbox(
                    label="LoRA Model Repo (e.g., TheBulge/AndroWan-2.1-T2V-1.3B)",
                    value="TheBulge/AndroWan-2.1-T2V-1.3B"
                )
            
            with gr.Row():
                lora_weight_name = gr.Textbox(
                    label="LoRA Path in Repo (optional)",
                    value="safetensors/AndroWan_v32-0036_ema.safetensors",
                    info="Specify for repos with multiple .safetensors files, e.g.: adapter_model.safetensors, pytorch_lora_weights.safetensors, etc."
                )
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0.0,
                    maximum=2.0,
                    value=1.00,
                    step=0.05
                )
            
            with gr.Row():
                scheduler_type = gr.Dropdown(
                    choices=list(SCHEDULER_OPTIONS.keys()),
                    value="UniPCMultistepScheduler",
                    label="Scheduler"
                )
                flow_shift = gr.Slider(
                    label="Flow Shift",
                    minimum=1.0,
                    maximum=12.0,
                    value=3.0,
                    step=0.5,
                    info="2.0-5.0 for smaller videos, 7.0-12.0 for larger videos"
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=1024,
                    value=832,
                    step=32
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=1792,
                    value=480,
                    step=30
                )
            
            with gr.Row():
                num_frames = gr.Slider(
                    label="Number of Frames (4k+1 is recommended, e.g. 33)",
                    minimum=17,
                    maximum=129,
                    value=33,
                    step=4
                )
                output_fps = gr.Slider(
                    label="Output FPS",
                    minimum=8,
                    maximum=30,
                    value=16,
                    step=1
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale (CFG)",
                    minimum=1.0,
                    maximum=15.0,
                    value=4.0,
                    step=0.5
                )
                num_inference_steps = gr.Slider(
                    label="Inference Steps",
                    minimum=10,
                    maximum=100,
                    value=24,
                    step=1
                )
            
            seed = gr.Number(
                label="Seed (-1 for random)",
                value=-1,
                precision=0,
                info="Set a specific seed for deterministic results"
            )
            
            generate_btn = gr.Button("Generate Video")
        
        with gr.Column(scale=1):
            output_video = gr.Video(label="Generated Video")
            used_seed = gr.Number(label="Seed", precision=0)
            
    generate_btn.click(
        fn=generate_video,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            lora_id,
            lora_weight_name,
            lora_scale,
            scheduler_type,
            flow_shift,
            height,
            width,
            num_frames,
            guidance_scale,
            num_inference_steps,
            output_fps,
            seed
        ],
        outputs=[output_video, used_seed]
    )
    
    gr.Markdown("""
    ## Tips for best results:
    - For smaller resolution videos, try lower values of flow shift (2.0-5.0)
    - For larger resolution videos, try higher values of flow shift (7.0-12.0)
    - Number of frames should be of the form 4k+1 (e.g., 33, 81)
    - Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
    
    ## Using LoRAs with multiple safetensors files:
    If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
    You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
    """)

demo.launch()