Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,095 Bytes
cf345e6 b17912c cf345e6 f61fca1 cf345e6 3b2e319 b17912c cf345e6 b17912c cf345e6 3b2e319 cf345e6 bbd155d cf345e6 f61fca1 43084dd 3b2e319 f61fca1 3b2e319 1ead6f2 3b2e319 bbd155d f61fca1 bbd155d f61fca1 3b2e319 43084dd 3b2e319 f61fca1 43084dd ca11d33 43084dd 3b2e319 f61fca1 cf345e6 43084dd cf345e6 bbd155d 9d8d75b bbd155d 43084dd cf345e6 f735e48 cf345e6 d3f7898 cf345e6 f735e48 cf345e6 bbd155d f735e48 bbd155d cf345e6 d3f7898 bbd155d cf345e6 bbd155d cf345e6 bbd155d cf345e6 d3f7898 cf345e6 bbd155d cf345e6 d3f7898 cf345e6 f735e48 cf345e6 f61fca1 cf345e6 43084dd 9a065a7 cf345e6 10b0bca cf345e6 bbd155d cf345e6 f61fca1 cf345e6 f61fca1 10b0bca cf345e6 d3f7898 bbd155d cf345e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
import gradio as gr
import spaces
import random
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
# Define model options
MODEL_OPTIONS = {
"Wan2.1-T2V-1.3B": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
"Wan2.1-T2V-14B": "Wan-AI/Wan2.1-T2V-14B-Diffusers"
}
# Define scheduler options
SCHEDULER_OPTIONS = {
"UniPCMultistepScheduler": UniPCMultistepScheduler,
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
}
@spaces.GPU(duration=300)
def generate_video(
model_choice,
prompt,
negative_prompt,
lora_id,
lora_weight_name,
lora_scale,
scheduler_type,
flow_shift,
height,
width,
num_frames,
guidance_scale,
num_inference_steps,
output_fps,
seed
):
# Get model ID from selection
model_id = MODEL_OPTIONS[model_choice]
# Set seed for reproducibility
if seed == -1 or seed is None or seed == "":
seed = random.randint(0, 2147483647)
else:
seed = int(seed)
# Set the seed
torch.manual_seed(seed)
# Load model
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
# Set scheduler
if scheduler_type == "UniPCMultistepScheduler":
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config,
flow_shift=flow_shift
)
else:
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
# Move to GPU
pipe.to("cuda")
# Load LoRA weights if provided
if lora_id and lora_id.strip():
try:
# If a specific weight name is provided, use it
if lora_weight_name and lora_weight_name.strip():
pipe.load_lora_weights(lora_id, weight_name=lora_weight_name)
else:
pipe.load_lora_weights(lora_id)
# Set lora scale if applicable
if hasattr(pipe, "set_adapters_scale") and lora_scale is not None:
pipe.set_adapters_scale(lora_scale)
except ValueError as e:
# Return informative error if there are multiple safetensors and no weight name
if "more than one weights file" in str(e):
return f"Error: The repository '{lora_id}' contains multiple safetensors files. Please specify a weight name using the 'LoRA Weight Name' field.", seed
else:
return f"Error loading LoRA weights: {str(e)}", seed
# Enable CPU offload for low VRAM
pipe.enable_model_cpu_offload()
# Generate video
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cuda").manual_seed(seed)
).frames[0]
# Export to video
temp_file = "output.mp4"
export_to_video(output, temp_file, fps=output_fps)
return temp_file, seed
# Create the Gradio interface
with gr.Blocks() as demo:
gr.HTML("""
<p align="center">
<svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
<path d='M195.43 109.93a.18.18 0 0 1-.27-.03l-.17-.26a.13.12-43.2 0 1 .01-.16q21.87-21.98 42.02-37.95c17.57-13.93 36.61-26.36 57.23-34.01q13.26-4.92 24.23-4.1c10.91.81 18.01 8.05 19.12 18.82.79 7.76-.64 15.73-3.29 23.37q-5.87 16.92-15.46 32.47a1.05 1.02-40.3 0 0-.09.91q11.79 32.3 2.48 63.6c-13.06 43.95-53.78 72.83-99.49 71.06q-16.32-.64-30.92-6.27a1.88 1.88 0 0 0-1.65.15c-12.54 7.69-26.93 14.55-41.16 17.68-4.99 1.1-9.54.6-16.14.62a6.31 6.04 50.1 0 1-1.35-.15c-19.69-4.51-18.03-25.43-12.71-40.65q5.95-17.05 15.9-32.34a.89.88 50.1 0 0 .07-.82c-13.76-32.93-7.8-71.64 14.32-99.05q20.75-25.73 51.75-33.99 29.88-7.96 59.38 2.25a.18.18 0 0 1 .04.32l-11.17 7.52a1.18 1.17-55 0 1-.93.17q-26.82-6.3-51.8 2.83c-24.65 9.02-43.94 28.53-52.73 53.27q-8.3 23.33-2.99 48.49.7 3.32 3.15 10.35c7.87 22.55 24.1 40.02 45.62 50.35a.52.51 43.2 0 1 .03.91l-10.31 5.96a.7.68-44.3 0 1-.69 0q-27.53-15.57-41.3-43.86a.1.09-44.1 0 0-.17 0q-6.59 11.46-11.16 23.67c-4.39 11.73-11.35 38.04 10.45 38.5q6.38.13 11.55-1.22c17.2-4.51 32.86-13.33 47.66-23.11q24.23-16.04 49.48-39.51c28.57-26.55 55.11-56.92 74.11-90.87q5.96-10.65 10.32-23.77c2.38-7.15 5.16-20.81-.67-27.03q-3.67-3.92-8.08-4.48-10.87-1.39-22.3 2.5-11.06 3.77-18.33 7.43c-30.93 15.54-58.11 36.9-83.59 60.43zm100.11-36.16q10.18 9.98 17.31 22.67a.6.59 46.1 0 1-.01.59l-6.17 10.69a.34.33-42.8 0 1-.59-.02q-7.06-14.92-18.34-25.98-11.28-11.06-26.34-17.82a.34.33-48.4 0 1-.03-.59l10.56-6.38a.6.59 42.7 0 1 .59-.02q12.83 6.88 23.02 16.86zm430.69 78.36h10a1.13 1.12-74.2 0 0 .96-.54q11.1-17.8 23.93-38.19 1.8-2.85 5.39-3.1 3.42-.23 11.73-.11 1.88.02 2.61.66a2.23 2.08-54 0 1 .34 2.77q-12.01 19.41-29.2 46.98a.86.85 45.5 0 0 0 .93q12.8 20.23 28.66 46.12.22.36.29 1.09a1.98 1.97 85.7 0 1-1.85 2.16q-7.51.45-13.91-.05c-2.52-.2-4.25-2.09-5.57-4.24q-8.26-13.5-22.19-36.26a.74.72-15 0 0-.63-.35H726.2a.62.61 0 0 0-.62.61q-.03 31.31.02 35.17.07 5.25-5.02 5.31-7.87.1-10.26-.19-3.72-.45-3.71-4.69.05-35.54-.02-135.71c0-3.87.67-6.1 4.77-6.12q7.55-.05 10.37.06c3.4.13 3.94 3.29 3.92 6.34q-.22 43.68-.02 80.75a.6.6 0 0 0 .6.6zM191.9 74.2l1.52.2a.33.33 0 0 1 0 .65l-1.52.22a.33.33 0 0 0-.28.29l-.2 1.52a.33.33 0 0 1-.65 0l-.22-1.52a.33.33 0 0 0-.29-.28l-1.52-.2a.33.33 0 0 1 0-.65l1.52-.22a.33.33 0 0 0 .28-.29l.2-1.52a.33.33 0 0 1 .65 0l.22 1.52a.33.33 0 0 0 .29.28zm64.12 2.96l2.78.37a.33.33 0 0 1 0 .65l-2.78.39a.33.33 0 0 0-.28.29l-.37 2.78a.33.33 0 0 1-.65 0l-.39-2.78a.33.33 0 0 0-.29-.28l-2.78-.37a.33.33 0 0 1 0-.65l2.78-.39a.33.33 0 0 0 .28-.29l.37-2.78a.33.33 0 0 1 .65 0l.39 2.78a.33.33 0 0 0 .29.28zm150.31 27.5q-.37 2.75-.37 5.59.1 55.28.07 95.29-.01 5.69-4.97 5.57-4.23-.1-9.06-.04-4.92.06-4.92-4.56-.03-47.02-.01-122.76c0-4.45 2.16-5.1 6.27-5.1q17.99.04 19.41.04c4.14-.01 5.19 2.26 6.29 6.06q6.68 23.18 28.31 98.03a.22.22 0 0 0 .42-.01q26.48-97.12 26.96-99.03 1.26-5.01 5.72-5.05 9.8-.09 22.27.08c3.29.04 3.71 3.1 3.7 5.88q-.07 58.05-.18 118.23c-.01 4.45.51 7.92-4.69 8.13q-3.32.14-7.06.02c-5.17-.17-7.18.03-7.18-6.18q.01-66.62.01-100.28a.141.141 0 0 0-.28-.04q-20.97 79.04-26.98 101.79-1.27 4.8-5.99 4.76-4.96-.03-13.08-.01c-4.08.01-5.44-1.81-6.54-5.76q-17.37-62.23-27.98-100.66a.07.07 0 0 0-.14.01zm-172.34 1.26l2.49.36a.32.32 0 0 1 0 .63l-2.49.37a.32.32 0 0 0-.27.27l-.36 2.49a.32.32 0 0 1-.63 0l-.37-2.49a.32.32 0 0 0-.27-.27l-2.49-.36a.32.32 0 0 1 0-.63l2.49-.37a.32.32 0 0 0 .27-.27l.36-2.49a.32.32 0 0 1 .63 0l.37 2.49a.32.32 0 0 0 .27.27zm46.8 2.66l2.5.41a.34.34 0 0 1 0 .67l-2.5.4a.34.34 0 0 0-.28.28l-.41 2.5a.34.34 0 0 1-.67 0l-.4-2.5a.34.34 0 0 0-.28-.28l-2.5-.41a.34.34 0 0 1 0-.67l2.5-.4a.34.34 0 0 0 .28-.28l.41-2.5a.34.34 0 0 1 .67 0l.4 2.5a.34.34 0 0 0 .28.28zm311.55 38.61q.18-12.55-.16-15.38c-.44-3.69-4.05-3.64-6.93-3.64q-18.53.03-52.88-.01c-3.01 0-3.94-2.46-3.95-5.32q-.01-5.13.04-8.35.08-4.18 4.29-4.26 5.99-.11 59.86-.05c13.05.02 18.7 5.13 18.7 18.33q.01 61.89.01 63.24c.03 15.73-6.4 19.32-21.07 19.32q-30.49.01-43.5-.02c-14.08-.04-20.24-3.83-20.35-18.8q-.12-16.77.08-27.74c.21-12.16 6.75-16.58 18.27-16.58q22.02.01 46.85-.01a.74.74 0 0 0 .74-.73zm-.66 18.75q-26.48-.05-41.68.04-4.64.03-4.77 4.52-.22 8.08-.06 16.74c.12 6.3 2.92 5.93 8.53 5.94q14.25.01 34.08-.03c4.89-.02 4.57-4.12 4.6-8.32q.08-11.72-.06-18.26a.65.64 89.1 0 0-.64-.63zm45.34 45.09c-2.82.02-4.77-1.44-4.77-4.22q-.01-73.72.01-78.31c.05-12.96 5.29-18.22 18.24-18.3q11.13-.06 38.25-.02 4.76.01 4.86 4.11.13 4.95.08 8.97c-.05 3.99-1.85 4.93-5.85 4.92q-24.69-.01-26.97 0c-5.43 0-9.69-.88-9.69 5.79q-.01 66 .02 70.71.02 3.45-.84 4.58-1.47 1.96-4.11 1.92-9.21-.15-9.23-.15zm200.71-17.86q16.73 0 18.8-.04c5.15-.13 4.81-3.81 4.8-8.15q-.01-10.05.01-70.24 0-4.51 4.92-4.56 7.92-.08 10 .09 3.9.31 3.9 4.48.02 60.37-.01 77.78c-.02 15.09-6.99 18.68-20.65 18.54q-.42 0-21.77 0-21.35 0-21.77 0c-13.66.14-20.63-3.45-20.65-18.54q-.03-17.41-.01-77.78 0-4.17 3.9-4.48 2.08-.17 10-.09 4.92.05 4.92 4.56.02 60.19.01 70.24c-.01 4.34-.35 8.02 4.79 8.14q2.08.05 18.81.05zm63.52 13.64q-.01-73.72.01-78.31c.05-12.96 5.29-18.22 18.24-18.3q11.13-.06 38.25-.02 4.76.01 4.86 4.11.13 4.95.08 8.97c-.05 3.99-1.85 4.93-5.85 4.92q-24.69-.01-26.97 0c-5.43 0-9.69-.88-9.69 5.79q-.01 66 .02 70.71.02 3.45-.84 4.58-1.47 1.96-4.11 1.92-9.21-.15-9.23-.15c-2.82.02-4.77-1.44-4.77-4.22zm109.52-25.57q18.81-60.07 20.5-65.73 1.57-5.27 6.17-5.34 3.67-.05 10.57.07c2.6.05 3.39 2.42 2.65 4.66q-11.68 35.64-41.85 128.15-1.51 4.61-6.26 4.65-4.38.03-7.66-.07c-3.83-.12-3.5-3.08-2.61-6.07q3.74-12.68 8.78-29.76a1.97 1.91-47.2 0 0-.03-1.2q-19.47-53.62-34.46-94.88c-.96-2.65-1.38-5.23 2.18-5.46q1.66-.11 11.3-.09 4.8 0 6.58 4.96 13.98 38.91 23.84 66.12a.16.16 0 0 0 .3-.01zm-767.05-7.85q-.03-28.67.01-36.09.03-4-1.39-6.63c-2.4-4.47-7.99-5.48-11.98-2.79q-4.8 3.23-4.86 9.16-.17 16.69-.02 24.3a.47.47 0 0 1-.47.48h-10.36a.46.46 0 0 1-.46-.46q.02-21.54 0-23.86-.03-2.66-.94-5.2c-2.63-7.33-11.73-8.07-15.95-1.8q-1.99 2.96-1.98 7.75.05 21.93.01 22.99a.59.58-89 0 1-.58.57h-10.14a.57.57 0 0 1-.57-.57v-43.73a1.04 1.04 0 0 1 1.04-1.04h8.41a1.25 1.24-2.5 0 1 1.24 1.13l.3 3.59a.27.27 0 0 0 .44.19q.06-.06 1.28-1.44c2.92-3.32 7.69-4.52 12.01-4.15q8.1.68 11.68 7.78a.37.37 0 0 0 .64.03c4.8-7.6 13.82-9.19 22.01-6.61 8.67 2.72 11.91 11.02 11.96 19.52q.07 14.44.05 24.75a1.29 1.26 66.4 0 1-.32.85l-10.44 11.52a.36.36 0 0 1-.62-.24zm-87.22-51.13l1.95.24a.34.34 0 0 1 0 .67l-1.96.22a.34.34 0 0 0-.3.3l-.24 1.95a.34.34 0 0 1-.67 0l-.22-1.96a.34.34 0 0 0-.3-.3l-1.95-.24a.34.34 0 0 1 0-.67l1.96-.22a.34.34 0 0 0 .3-.3l.24-1.95a.34.34 0 0 1 .67 0l.22 1.96a.34.34 0 0 0 .3.3zm13.88 41.55q.18 0 .43.34a.87.82 79.1 0 0 .45.33l.6.17a.362.362 0 0 1-.14.71q-.38-.05-.48-.08-.04-.02-.4.44-.26.33-.45.33-.19 0-.45-.32-.37-.46-.41-.44-.1.03-.48.09a.363.363 0 0 1-.15-.71l.6-.18a.87.82-79.8 0 0 .45-.33q.24-.35.43-.35zm25.81 35.05q.01.16-.38.69a.6.59 33.3 0 1-.79.16q-1.23-.74-1.23-.8 0-.05 1.19-.85a.6.59-36.1 0 1 .79.12q.42.51.42.68z' fill="#100c6d" />
</svg>
</p>
""")
gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value="Wan2.1-T2V-1.3B",
label="Model"
)
prompt = gr.Textbox(
label="Prompt",
value="",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿",
lines=3
)
with gr.Row():
lora_id = gr.Textbox(
label="LoRA Model Repo (e.g., TheBulge/AndroWan-2.1-T2V-1.3B)",
value="TheBulge/AndroWan-2.1-T2V-1.3B"
)
with gr.Row():
lora_weight_name = gr.Textbox(
label="LoRA Path in Repo (optional)",
value="safetensors/AndroWan_v32-0036_ema.safetensors",
info="Specify for repos with multiple .safetensors files, e.g.: adapter_model.safetensors, pytorch_lora_weights.safetensors, etc."
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
value=1.00,
step=0.05
)
with gr.Row():
scheduler_type = gr.Dropdown(
choices=list(SCHEDULER_OPTIONS.keys()),
value="UniPCMultistepScheduler",
label="Scheduler"
)
flow_shift = gr.Slider(
label="Flow Shift",
minimum=1.0,
maximum=12.0,
value=3.0,
step=0.5,
info="2.0-5.0 for smaller videos, 7.0-12.0 for larger videos"
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
value=832,
step=32
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1792,
value=480,
step=30
)
with gr.Row():
num_frames = gr.Slider(
label="Number of Frames (4k+1 is recommended, e.g. 33)",
minimum=17,
maximum=129,
value=33,
step=4
)
output_fps = gr.Slider(
label="Output FPS",
minimum=8,
maximum=30,
value=16,
step=1
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale (CFG)",
minimum=1.0,
maximum=15.0,
value=4.0,
step=0.5
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=10,
maximum=100,
value=24,
step=1
)
seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0,
info="Set a specific seed for deterministic results"
)
generate_btn = gr.Button("Generate Video")
with gr.Column(scale=1):
output_video = gr.Video(label="Generated Video")
used_seed = gr.Number(label="Seed", precision=0)
generate_btn.click(
fn=generate_video,
inputs=[
model_choice,
prompt,
negative_prompt,
lora_id,
lora_weight_name,
lora_scale,
scheduler_type,
flow_shift,
height,
width,
num_frames,
guidance_scale,
num_inference_steps,
output_fps,
seed
],
outputs=[output_video, used_seed]
)
gr.Markdown("""
## Tips for best results:
- For smaller resolution videos, try lower values of flow shift (2.0-5.0)
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
- Number of frames should be of the form 4k+1 (e.g., 33, 81)
- Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
## Using LoRAs with multiple safetensors files:
If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
""")
demo.launch() |