Spaces:
Running
Running
File size: 7,866 Bytes
f319815 2ec0628 9c1149a 6df230f 9c1149a 6df230f b5a10e2 6df230f d4325de 6df230f 2db2198 6df230f 1282838 6df230f 9319960 6df230f d20b588 6df230f edb9168 6df230f 8dd2b9d 6df230f 9c1149a 6df230f 9c1149a 6df230f 9c1149a 6df230f 9c1149a 6df230f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "duckdb==1.2.1",
# "marimo",
# "polars[pyarrow]==1.25.2",
# "sqlglot==26.11.1",
# ]
# ///
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "marimo",
# "duckdb==1.2.1",
# "sqlglot==26.11.1",
# "polars[pyarrow]==1.25.2",
# ]
# ///
import marimo
__generated_with = "0.12.8"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Loading JSON
DuckDB supports reading and writing JSON through the `json` extension that should be present in most distributions and is autoloaded on first-use. If it's not, you can [install and load](https://duckdb.org/docs/stable/data/json/installing_and_loading.html) it manually like any other extension.
In this tutorial we'll cover 4 different ways we can transfer JSON data in and out of DuckDB:
- [`FROM`](https://duckdb.org/docs/stable/sql/query_syntax/from.html) statement.
- [`read_json`](https://duckdb.org/docs/stable/data/json/loading_json#the-read_json-function) function.
- [`COPY`](https://duckdb.org/docs/stable/sql/statements/copy#copy--from) statement.
- [`IMPORT DATABASE`](https://duckdb.org/docs/stable/sql/statements/export.html) statement.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Using `FROM`
Loading data using `FROM` is simple and straightforward. We use a path or URL to the file we want to load where we'd normally put a table name. When we do this, DuckDB attempts to infer the right way to read the file including the correct format and column types. In most cases this is all we need to load data into DuckDB.
"""
)
return
@app.cell
def _(mo):
_df = mo.sql(
f"""
SELECT * FROM 'https://raw.githubusercontent.com/vega/vega-datasets/refs/heads/main/data/cars.json';
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Using `read_json`
For greater control over how the JSON is read, we can directly call the [`read_json`](https://duckdb.org/docs/stable/data/json/loading_json#the-read_json-function) function. It supports a few different arguments — some common ones are:
- `format='array'` or `format='newline_delimited'` - the former tells DuckDB that the rows should be read from a top-level JSON array while the latter means the rows should be read from JSON objects separated by a newline (JSONL/NDJSON).
- `ignore_errors=true` - skips lines with parse errors when reading newline delimited JSON.
- `columns={columnName: type, ...}` - lets you set types for individual columns manually.
- `dateformat` and `timestampformat` - controls how DuckDB attempts to parse [Date](https://duckdb.org/docs/stable/sql/data_types/date) and [Timestamp](https://duckdb.org/docs/stable/sql/data_types/timestamp) types. Use the format specifiers specified in the [docs](https://duckdb.org/docs/stable/sql/functions/dateformat.html#format-specifiers).
We could rewrite the previous query more explicitly as:
"""
)
return
@app.cell
def _(mo):
cars_df = mo.sql(
f"""
SELECT *
FROM
read_json(
'https://raw.githubusercontent.com/vega/vega-datasets/refs/heads/main/data/cars.json',
format = 'array',
columns = {{
Name:'VARCHAR',
Miles_per_Gallon:'FLOAT',
Cylinders:'FLOAT',
Displacement:'FLOAT',
Horsepower:'FLOAT',
Weight_in_lbs:'FLOAT',
Acceleration:'FLOAT',
Year:'DATE',
Origin:'VARCHAR'
}},
dateformat = '%Y-%m-%d'
)
;
"""
)
return (cars_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Other than singular files we can read [multiple files](https://duckdb.org/docs/stable/data/multiple_files/overview.html) at a time by either passing a list of files or a UNIX glob pattern.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Using `COPY`
`COPY` is for useful both for importing and exporting data in a variety of formats including JSON. For example, we can import data into an existing table from a JSON file.
"""
)
return
@app.cell
def _(mo):
_df = mo.sql(
f"""
CREATE OR REPLACE TABLE cars2 (
Name VARCHAR,
Miles_per_Gallon VARCHAR,
Cylinders VARCHAR,
Displacement FLOAT,
Horsepower FLOAT,
Weight_in_lbs FLOAT,
Acceleration FLOAT,
Year DATE,
Origin VARCHAR
);
"""
)
return (cars2,)
@app.cell
def _(cars2, mo):
_df = mo.sql(
f"""
COPY cars2 FROM 'https://raw.githubusercontent.com/vega/vega-datasets/refs/heads/main/data/cars.json' (FORMAT json, ARRAY true, DATEFORMAT '%Y-%m-%d');
SELECT * FROM cars2;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Similarly, we can write data from a table or select statement to a JSON file. For example, we create a new JSONL file with just the car names and miles per gallon. We first create a temporary directory to avoid cluttering our project directory.""")
return
@app.cell
def _(Path):
from tempfile import TemporaryDirectory
TMP_DIR = TemporaryDirectory()
COPY_PATH = Path(TMP_DIR.name) / "cars_mpg.jsonl"
print(COPY_PATH)
return COPY_PATH, TMP_DIR, TemporaryDirectory
@app.cell
def _(COPY_PATH, cars2, mo):
_df = mo.sql(
f"""
COPY (
SELECT
Name AS car_name,
"Miles_per_Gallon" AS mpg
FROM cars2
WHERE mpg IS NOT null
) TO '{COPY_PATH}' (FORMAT json);
"""
)
return
@app.cell
def _(COPY_PATH, Path):
Path(COPY_PATH).exists()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Using `IMPORT DATABASE`
The last method we can use to load JSON data is using the `IMPORT DATABASE` statement. It works in conjunction with `EXPORT DATABASE` to save and load an entire database to and from a directory. For example let's try and export our default in-memory database.
"""
)
return
@app.cell
def _(Path, TMP_DIR):
EXPORT_PATH = Path(TMP_DIR.name) / "cars_export"
print(EXPORT_PATH)
return (EXPORT_PATH,)
@app.cell
def _(EXPORT_PATH, mo):
_df = mo.sql(
f"""
EXPORT DATABASE '{EXPORT_PATH}' (FORMAT json);
"""
)
return
@app.cell
def _(EXPORT_PATH, Path):
list(Path(EXPORT_PATH).iterdir())
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We can then load the database back into DuckDB.""")
return
@app.cell
def _(EXPORT_PATH, mo):
_df = mo.sql(
f"""
DROP TABLE IF EXISTS cars2;
IMPORT DATABASE '{EXPORT_PATH}';
SELECT * FROM cars2;
"""
)
return
@app.cell(hide_code=True)
def _(TMP_DIR):
TMP_DIR.cleanup()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Further Reading
- Complete information on the JSON support in DuckDB can be found in their [documentation](https://duckdb.org/docs/stable/data/json/overview.html).
- You can also learn more about using SQL in marimo from the [examples](https://github.com/marimo-team/marimo/tree/main/examples/sql).
"""
)
return
@app.cell
def _():
import marimo as mo
from pathlib import Path
return Path, mo
if __name__ == "__main__":
app.run()
|