Spaces:
Running
Running
File size: 29,272 Bytes
2d4a671 1a64053 2d4a671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.1",
# "numpy==2.2.4",
# "drawdata==0.3.7",
# "scikit-learn==1.6.1",
# "polars==1.26.0",
# ]
# ///
import marimo
__generated_with = "0.12.4"
app = marimo.App(width="medium", app_title="Logistic Regression")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Logistic Regression
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part5/log_regression/), by Stanford professor Chris Piech._
Logistic Regression is a classification algorithm (I know, terrible name. Perhaps Logistic Classification would have been better) that works by trying to learn a function that approximates $P(y|x)$. It makes the central assumption that $P(y|x)$ can be approximated as a sigmoid function applied to a linear combination of input features. It is particularly important to learn because logistic regression is the basic building block of artificial neural networks.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## The Binary Classification Problem
Imagine situations where we would like to know:
- The eligibility of getting a bank loan given the value of credit score ($x_{credit\_score}$) and monthly income ($x_{income}$)
- Identifying a tumor as benign or malignant given its size ($x_{tumor\_size}$)
- Classifying an email as promotional given the number of occurrences for some keywords like {'win', 'gift', 'discount'} ($x_{n\_win}$, $x_{n\_gift}$, $x_{n\_discount}$)
- Finding a monetary transaction as fraudulent given the time of occurrence ($x_{time\_stamp}$) and amount ($x_{amount}$)
These problems occur frequently in real life & can be dealt with machine learning. All such problems come under the umbrella of what is known as Classification. In each scenario, only one of the two possible outcomes can occur, hence these are specifically known as Binary Classification problems.
### How Does A Machine Perform Classification?
During the inference, the goal is to have the ML model predict the class label for a given set of feature values.
Specifically, a binary classification model estimates two probabilities $p_0$ & $p_1$ for 'class-0' and 'class-1' respectively where $p_0 + p_1 = 1$.
The predicted label depends on $\max(p_0, p_1)$ i.e., it's the one which is most probable based on the given features.
In logistic regression, $p_1$ (i.e., success probability) is compared with a predefined threshold $p$ to predict the class label like below:
$$\text{predicted class} =
\begin{cases}
1, & \text{if } p_1 \geq p \\
0, & \text{otherwise}
\end{cases}$$
To keep the notation simple and consistent, we will denote the success probability as $p$, and failure probability as $(1-p)$ instead of $p_1$ and $p_0$ respectively.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Why NOT Linear Regression?
Can't we really use linear regression to address classification? The answer is NO!
Let's try to understand why:
To estimate $p$ using linear regression, we would need:
$$p = \beta_0 + \beta_1 \cdot x_{tumor\_size}$$
This doesn't seem to be feasible as the right side, in principle, belongs to $\mathbb{R}$ (any real number) & the left side belongs to $(0,1)$ (a probability).
Can we convert $(\beta_0 + \beta_1 \cdot x_{tumor\_size})$ to something belonging to $(0,1)$? That may work as an estimate of a probability! The answer is YES!
We need a converter (a function), say, $g()$ that will connect $p \in (0,1)$ to $(\beta_0 + \beta_1 \cdot x_{tumor\_size}) \in \mathbb{R}$.
Fortunately, such functions do exist and they are often referred to as link functions in this context.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## The Mathematical Foundation
Mathematically, for a single training datapoint $(\mathbf{x}, y)$ Logistic Regression assumes:
$$P(Y=1|\mathbf{X}=\mathbf{x}) = \sigma(z) \text{ where } z = \theta_0 + \sum_{i=1}^m \theta_i x_i$$
This assumption is often written in the equivalent forms:
$$P(Y=1|\mathbf{X}=\mathbf{x}) =\sigma(\mathbf{\theta}^T\mathbf{x}) \quad \text{ where we always set $x_0$ to be 1}$$
$$P(Y=0|\mathbf{X}=\mathbf{x}) =1-\sigma(\mathbf{\theta}^T\mathbf{x}) \quad \text{ by total law of probability}$$
Using these equations for probability of $Y|X$ we can create an algorithm that selects values of $\theta$ that maximize that probability for all data. I am first going to state the log probability function and partial derivatives with respect to $\theta$. Then later we will (a) show an algorithm that can chose optimal values of $\theta$ and (b) show how the equations were derived.
An important thing to realize is that: given the best values for the parameters ($\theta$), logistic regression often can do a great job of estimating the probability of different class labels. However, given bad, or even random, values of $\theta$ it does a poor job. The amount of "intelligence" that your logistic regression machine learning algorithm has is dependent on having good values of $\theta$.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Logistic Regression Is A Linear Classifier
The logistic regression equation is actually a straight line (of the form $y = mx + c$).
Recall the prediction rule:
$$\text{predicted class} =
\begin{cases}
1, & \text{if } p \geq \theta_0 + \theta_1 \cdot x_{tumor\_size} \Rightarrow \log\frac{p}{1-p} \\
0, & \text{otherwise}
\end{cases}$$
A simple logistic regression (the one we discussed) predicts the class label by identifying the regions on either side of a straight line (or hyperplane in general), hence it's a linear classifier.
Logistic regression works well for linearly separable classes.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md("""### Visual: Linear Separability and Classification""")
return
@app.cell(hide_code=True)
def _(mo, np, plt):
# show relevant comaparison to the above last sentence/statement
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Linear separable data
np.random.seed(42)
X1 = np.random.randn(100, 2) - 2
X2 = np.random.randn(100, 2) + 2
ax1.scatter(X1[:, 0], X1[:, 1], color='blue', alpha=0.5)
ax1.scatter(X2[:, 0], X2[:, 1], color='red', alpha=0.5)
# Decision boundary (line)
ax1.plot([-5, 5], [5, -5], 'k--', linewidth=2)
ax1.set_xlim(-5, 5)
ax1.set_ylim(-5, 5)
ax1.set_title('Linearly Separable Classes')
# non-linear separable data
radius = 2
theta = np.linspace(0, 2*np.pi, 100)
# Outer circle points (class 1)
outer_x = 3 * np.cos(theta)
outer_y = 3 * np.sin(theta)
# Inner circle points (class 2)
inner_x = 1.5 * np.cos(theta) + np.random.randn(100) * 0.2
inner_y = 1.5 * np.sin(theta) + np.random.randn(100) * 0.2
ax2.scatter(outer_x, outer_y, color='blue', alpha=0.5)
ax2.scatter(inner_x, inner_y, color='red', alpha=0.5)
# Attempt to draw a linear boundary (which won't work well) proving the point
ax2.plot([-5, 5], [2, 2], 'k--', linewidth=2)
ax2.set_xlim(-5, 5)
ax2.set_ylim(-5, 5)
ax2.set_title('Non-Linearly Separable Classes')
fig.tight_layout()
mo.mpl.interactive(fig)
return (
X1,
X2,
ax1,
ax2,
fig,
inner_x,
inner_y,
outer_x,
outer_y,
radius,
theta,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""**Figure**: On the left, the classes are linearly separable as the boundary is a straight line. However, they are not linearly separable on the right, where no straight line can properly separate the two classes.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Notation
Before we get started I want to make sure that we are all on the same page with respect to notation. In logistic regression, $\theta$ is a vector of parameters of length $m$ and we are going to learn the values of those parameters based off of $n$ training examples. The number of parameters should be equal to the number of features of each datapoint.
Two pieces of notation that we use often in logistic regression that you may not be familiar with are:
$$\mathbf{\theta}^T\mathbf{x} = \sum_{i=1}^m \theta_i x_i = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m \quad \text{dot product, aka weighted sum}$$
$$\sigma(z) = \frac{1}{1+ e^{-z}} \quad \text{sigmoid function}$$
The sigmoid function is a special function that maps any real number to a probability between 0 and 1. It has an S-shaped curve and is particularly useful for binary classification problems.
"""
)
return
@app.cell(hide_code=True)
def _(mo, np, plt):
# Plot the sigmoid function
_fig, ax = plt.subplots(figsize=(10, 6))
# Generate x values
x = np.linspace(-10, 10, 1000)
# Compute sigmoid
def sigmoid(z):
return 1 / (1 + np.exp(-z))
y = sigmoid(x)
# Plot sigmoid function
ax.plot(x, y, 'b-', linewidth=2)
# Add horizontal lines at y=0 and y=1
ax.axhline(y=0, color='k', linestyle='-', alpha=0.3)
ax.axhline(y=1, color='k', linestyle='-', alpha=0.3)
ax.axhline(y=0.5, color='r', linestyle='--', alpha=0.5)
# Add vertical line at x=0
ax.axvline(x=0, color='k', linestyle='-', alpha=0.3)
# Add annotations
ax.text(1, 0.85, r'$\sigma(z) = \frac{1}{1 + e^{-z}}$', fontsize=14)
ax.text(-9, 0.1, 'As z → -∞, σ(z) → 0', fontsize=12)
ax.text(3, 0.9, 'As z → ∞, σ(z) → 1', fontsize=12)
ax.text(0.5, 0.4, 'σ(0) = 0.5', fontsize=12)
# Set labels and title
ax.set_xlabel('z', fontsize=14)
ax.set_ylabel('σ(z)', fontsize=14)
ax.set_title('Sigmoid Function', fontsize=16)
# Set axis limits
ax.set_xlim(-10, 10)
ax.set_ylim(-0.1, 1.1)
# Add grid
ax.grid(True, alpha=0.3)
mo.mpl.interactive(_fig)
mo.md(r"""
**Figure**: The sigmoid function maps any real number to a value between 0 and 1, making it perfect for representing probabilities.
/// note
For more information about the sigmoid function and its applications in deep learning, head over to [this detailed notebook](http://marimo.app/https://github.com/marimo-team/deepml-notebooks/blob/main/problems/problem-22/notebook.py) for more insights.
///
""")
return ax, sigmoid, x, y
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Log Likelihood
In order to choose values for the parameters of logistic regression we use Maximum Likelihood Estimation (MLE). As such we are going to have two steps: (1) write the log-likelihood function and (2) find the values of $\theta$ that maximize the log-likelihood function.
The labels that we are predicting are binary, and the output of our logistic regression function is supposed to be the probability that the label is one. This means that we can (and should) interpret each label as a Bernoulli random variable: $Y \sim \text{Bern}(p)$ where $p = \sigma(\theta^T \textbf{x})$.
To start, here is a super slick way of writing the probability of one datapoint (recall this is the equation form of the probability mass function of a Bernoulli):
$$P(Y=y | X = \mathbf{x}) = \sigma({\mathbf{\theta}^T\mathbf{x}})^y \cdot \left[1 - \sigma({\mathbf{\theta}^T\mathbf{x}})\right]^{(1-y)}$$
Now that we know the probability mass function, we can write the likelihood of all the data:
$$L(\theta) = \prod_{i=1}^n P(Y=y^{(i)} | X = \mathbf{x}^{(i)}) \quad \text{The likelihood of independent training labels}$$
$$= \prod_{i=1}^n \sigma({\mathbf{\theta}^T\mathbf{x}^{(i)}})^{y^{(i)}} \cdot \left[1 - \sigma({\mathbf{\theta}^T\mathbf{x}^{(i)}})\right]^{(1-y^{(i)})} \quad \text{Substituting the likelihood of a Bernoulli}$$
And if you take the log of this function, you get the reported Log Likelihood for Logistic Regression. The log likelihood equation is:
$$LL(\theta) = \sum_{i=1}^n y^{(i)} \log \sigma(\mathbf{\theta}^T\mathbf{x}^{(i)}) + (1-y^{(i)}) \log [1 - \sigma(\mathbf{\theta}^T\mathbf{x}^{(i)})]$$
Recall that in MLE the only remaining step is to choose parameters ($\theta$) that maximize log likelihood.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Gradient of Log Likelihood
Now that we have a function for log-likelihood, we simply need to choose the values of $\theta$ that maximize it. We can find the best values of $\theta$ by using an optimization algorithm. However, in order to use an optimization algorithm, we first need to know the partial derivative of log likelihood with respect to each parameter. First I am going to give you the partial derivative (so you can see how it is used). Then I am going to show you how to derive it:
$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[
y^{(i)} - \sigma(\mathbf{\theta}^T\mathbf{x}^{(i)})
\right] x_j^{(i)}$$
This is a beautifully simple formula. Notice that the gradient is the sum of the error terms $(y^{(i)} - \sigma(\mathbf{\theta}^T\mathbf{x}^{(i)}))$ multiplied by the feature value $x_j^{(i)}$. The _error term_ represents the _difference_ between the true label and our predicted probability.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Gradient Descent Optimization
Our goal is to choose parameters ($\theta$) that maximize likelihood, and we know the partial derivative of log likelihood with respect to each parameter. We are ready for our optimization algorithm.
In the case of logistic regression, we can't solve for $\theta$ mathematically. Instead, we use a computer to chose $\theta$. To do so we employ an algorithm called gradient descent (a classic in optimization theory). The idea behind gradient descent is that if you continuously take small steps downhill (in the direction of your negative gradient), you will eventually make it to a local minima. In our case we want to maximize our likelihood. As you can imagine, minimizing a negative of our likelihood will be equivalent to maximizing our likelihood.
The update to our parameters that results in each small step can be calculated as:
$$\theta_j^{\text{ new}} = \theta_j^{\text{ old}} + \eta \cdot \frac{\partial LL(\theta^{\text{ old}})}{\partial \theta_j^{\text{ old}}}$$
$$= \theta_j^{\text{ old}} + \eta \cdot \sum_{i=1}^n \left[
y^{(i)} - \sigma(\mathbf{\theta}^T\mathbf{x}^{(i)})
\right] x_j^{(i)}$$
Where $\eta$ is the magnitude of the step size that we take. If you keep updating $\theta$ using the equation above you will converge on the best values of $\theta$. You now have an intelligent model. Here is the gradient ascent algorithm for logistic regression in pseudo-code:
"""
)
return
@app.cell(hide_code=True)
def _(mo):
# Create a stylized pseudocode display
mo.md(r"""
```
Initialize: θⱼ = 0 for all 0 ≤ j ≤ m
Repeat many times:
gradient[j] = 0 for all 0 ≤ j ≤ m
For each training example (x, y):
For each parameter j:
gradient[j] += xⱼ(y - 1/(1+e^(-θᵀx)))
θⱼ += η * gradient[j] for all 0 ≤ j ≤ m
```
**Pro-tip:** Don't forget that in order to learn the value of θ₀ you can simply define x₀ to always be 1.
""")
return
@app.cell(hide_code=True)
def _(controls, mo, widget):
# create the layout
mo.vstack([
mo.md("## Interactive drawing demo\nDraw points of two different classes and see how logistic regression separates them. _The interactive demo was adapted and improvised from [Vincent Warmerdam's](https://github.com/koaning) code [here](https://github.com/probabl-ai/youtube-appendix/blob/main/04-drawing-data/notebook.ipynb)_."),
controls,
widget
])
return
@app.cell(hide_code=True)
def _(LogisticRegression, mo, np, plt, run_button, widget):
warning_msg = mo.md(""" /// warning
Need more data, please draw points of at least two different colors in the scatter widget
""")
# mo.stop if button isn't clicked yet
mo.stop(
not run_button.value,
mo.md(""" /// tip
click 'Run Logistic Regression' to see the model
""")
)
# get data from widget (can also use as_pandas)
df = widget.data_as_polars
# display appropriate warning
mo.stop(
df.is_empty() or df['color'].n_unique() < 2,
warning_msg
)
# extract features and labels
X = df[['x', 'y']].to_numpy()
y_colors = df['color'].to_numpy()
# fit logistic regression model
model = LogisticRegression()
model.fit(X, y_colors)
# create grid for the viz
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
xx, yy = np.meshgrid(
np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100)
)
# get probability predictions
Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
Z = Z.reshape(xx.shape)
# create figure
_fig, ax_fig = plt.subplots(figsize=(12, 8))
# plot decision boundary (probability contours)
contour = ax_fig.contourf(
xx, yy, Z,
levels=np.linspace(0, 1, 11),
alpha=0.7,
cmap="RdBu_r"
)
# plot decision boundary line (probability = 0.5)
ax_fig.contour(
xx, yy, Z,
levels=[0.5],
colors='k',
linewidths=2
)
# plot the data points (use same colors as in the widget)
ax_fig.scatter(X[:, 0], X[:, 1], c=y_colors, edgecolor='k', s=80)
# colorbar
plt.colorbar(contour, ax=ax_fig)
# labels and title
ax_fig.set_xlabel('x')
ax_fig.set_ylabel('y')
ax_fig.set_title('Logistic Regression')
# model params
coef = model.coef_[0]
intercept = model.intercept_[0]
equation = f"log(p/(1-p)) = {intercept:.2f} + {coef[0]:.3f}x₁ + {coef[1]:.3f}x₂"
# relevant info in regards to regression
model_info = mo.md(f"""
### Logistic regression model
**Equation**: {equation}
**Decision boundary**: probability = 0.5
**Accuracy**: {model.score(X, y_colors):.2f}
""")
# show results vertically stacked
mo.vstack([
mo.mpl.interactive(_fig),
model_info
])
return (
X,
Z,
ax_fig,
coef,
contour,
df,
equation,
intercept,
model,
model_info,
warning_msg,
x_max,
x_min,
xx,
y_colors,
y_max,
y_min,
yy,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Derivations
In this section we provide the mathematical derivations for the gradient of log-likelihood. The derivations are worth knowing because these ideas are heavily used in Artificial Neural Networks.
Our goal is to calculate the derivative of the log likelihood with respect to each theta. To start, here is the definition for the derivative of a sigmoid function with respect to its inputs:
$$\frac{\partial}{\partial z} \sigma(z) = \sigma(z)[1 - \sigma(z)] \quad \text{to get the derivative with respect to $\theta$, use the chain rule}$$
Take a moment and appreciate the beauty of the derivative of the sigmoid function. The reason that sigmoid has such a simple derivative stems from the natural exponent in the sigmoid denominator.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Detailed Derivation
Since the likelihood function is a sum over all of the data, and in calculus the derivative of a sum is the sum of derivatives, we can focus on computing the derivative of one example. The gradient of theta is simply the sum of this term for each training datapoint.
First I am going to show you how to compute the derivative the hard way. Then we are going to look at an easier method. The derivative of gradient for one datapoint $(\mathbf{x}, y)$:
$$\begin{align}
\frac{\partial LL(\theta)}{\partial \theta_j} &= \frac{\partial }{\partial \theta_j} y \log \sigma(\mathbf{\theta}^T\mathbf{x}) + \frac{\partial }{\partial \theta_j} (1-y) \log [1 - \sigma(\mathbf{\theta}^T\mathbf{x})] \quad \text{derivative of sum of terms}\\
&=\left[\frac{y}{\sigma(\theta^T\mathbf{x})} - \frac{1-y}{1-\sigma(\theta^T\mathbf{x})} \right] \frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x}) \quad \text{derivative of log $f(x)$}\\
&=\left[\frac{y}{\sigma(\theta^T\mathbf{x})} - \frac{1-y}{1-\sigma(\theta^T\mathbf{x})} \right] \sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})]\mathbf{x}_j \quad \text{chain rule + derivative of sigma}\\
&=\left[
\frac{y - \sigma(\theta^T\mathbf{x})}{\sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})]}
\right] \sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})]\mathbf{x}_j \quad \text{algebraic manipulation}\\
&= \left[y - \sigma(\theta^T\mathbf{x}) \right] \mathbf{x}_j \quad \text{cancelling terms}
\end{align}$$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Derivatives Without Tears
That was the hard way. Logistic regression is the building block of [Artificial Neural Networks](https://en.wikipedia.org/wiki/Neural_network_(machine_learning)). If we want to scale up, we are going to have to get used to an easier way of calculating derivatives. For that we are going to have to welcome back our old friend the chain rule. By the chain rule:
$$\begin{align}
\frac{\partial LL(\theta)}{\partial \theta_j} &=
\frac{\partial LL(\theta)}{\partial p}
\cdot \frac{\partial p}{\partial \theta_j}
\quad \text{Where } p = \sigma(\theta^T\textbf{x})\\
&=
\frac{\partial LL(\theta)}{\partial p}
\cdot \frac{\partial p}{\partial z}
\cdot \frac{\partial z}{\partial \theta_j}
\quad \text{Where } z = \theta^T\textbf{x}
\end{align}$$
Chain rule is the decomposition mechanism of calculus. It allows us to calculate a complicated partial derivative $\frac{\partial LL(\theta)}{\partial \theta_j}$ by breaking it down into smaller pieces.
$$\begin{align}
LL(\theta) &= y \log p + (1-y) \log (1 - p) \quad \text{Where } p = \sigma(\theta^T\textbf{x}) \\
\frac{\partial LL(\theta)}{\partial p} &= \frac{y}{p} - \frac{1-y}{1-p} \quad \text{By taking the derivative}
\end{align}$$
$$\begin{align}
p &= \sigma(z) \quad \text{Where }z = \theta^T\textbf{x}\\
\frac{\partial p}{\partial z} &= \sigma(z)[1- \sigma(z)] \quad \text{By taking the derivative of the sigmoid}
\end{align}$$
$$\begin{align}
z &= \theta^T\textbf{x} \quad \text{As previously defined}\\
\frac{\partial z}{\partial \theta_j} &= \textbf{x}_j \quad \text{ Only $\textbf{x}_j$ interacts with $\theta_j$}
\end{align}$$
Each of those derivatives was much easier to calculate. Now we simply multiply them together.
$$\begin{align}
\frac{\partial LL(\theta)}{\partial \theta_j} &=
\frac{\partial LL(\theta)}{\partial p}
\cdot \frac{\partial p}{\partial z}
\cdot \frac{\partial z}{\partial \theta_j} \\
&=
\Big[\frac{y}{p} - \frac{1-y}{1-p}\Big]
\cdot \sigma(z)[1- \sigma(z)]
\cdot \textbf{x}_j \quad \text{By substituting in for each term} \\
&=
\Big[\frac{y}{p} - \frac{1-y}{1-p}\Big]
\cdot p[1- p]
\cdot \textbf{x}_j \quad \text{Since }p = \sigma(z)\\
&=
[y(1-p) - p(1-y)]
\cdot \textbf{x}_j \quad \text{Multiplying in} \\
&= [y - p]\textbf{x}_j \quad \text{Expanding} \\
&= [y - \sigma(\theta^T\textbf{x})]\textbf{x}_j \quad \text{Since } p = \sigma(\theta^T\textbf{x})
\end{align}$$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Key Takeaways
Click on the statements below that you think are correct to verify your understanding:
/// details | Logistic regression tries to find parameters (θ) that minimize the error between predicted and actual values using ordinary least squares.
❌ **Incorrect.** Logistic regression uses maximum likelihood estimation (MLE), not ordinary least squares. It finds parameters that maximize the probability of observing the training data, which is different from minimizing squared errors as in linear regression.
///
/// details | The sigmoid function maps any real number to a value between 0 and 1, which allows logistic regression to output probabilities.
✅ **Correct!** The sigmoid function σ(z) = 1/(1+e^(-z)) takes any real number as input and outputs a value between 0 and 1. This is perfect for representing probabilities and is a key component of logistic regression.
///
/// details | The decision boundary in logistic regression is always a straight line, regardless of the data's complexity.
✅ **Correct!** Standard logistic regression produces a linear decision boundary (a straight line in 2D or a hyperplane in higher dimensions). This is why it works well for linearly separable data but struggles with more complex patterns, like concentric circles (as you might've noticed from the interactive demo).
///
/// details | The logistic regression model params are typically initialized to random values and refined through gradient descent.
✅ **Correct!** Parameters are often initialized to zeros or small random values, then updated iteratively using gradient descent (or ascent for maximizing likelihood) until convergence.
///
/// details | Logistic regression can naturally handle multi-class classification problems without any modifications.
❌ **Incorrect.** Standard logistic regression is inherently a binary classifier. To handle multi-class classification, techniques like one-vs-rest or softmax regression are typically used.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
So we've just explored logistic regression. Despite its name (seriously though, why not call it "logistic classification"?), it's actually quite elegant in how it transforms a simple linear model into a powerful decision _boundary_ maker.
The training process boils down to finding the values of θ that maximize the likelihood of seeing our training data. What's super cool is that even though the math looks _scary_ at first, the gradient has this surprisingly simple form: just the error (y - predicted) multiplied by the feature values.
Two key insights to remember:
- Logistic regression creates a _linear_ decision boundary, so it works great for linearly separable classes but struggles with more _complex_ patterns
- It directly gives you probabilities, not just classifications, which is incredibly useful when you need confidence measures
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Additional resources referred to:
- [Logistic Regression Tutorial by _Koushik Khan_](https://koushikkhan.github.io/resources/pdf/tutorials/logistic_regression_tutorial.pdf)
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Appendix (helper code)""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def init_imports():
# imports for our notebook
import numpy as np
import matplotlib.pyplot as plt
from drawdata import ScatterWidget
from sklearn.linear_model import LogisticRegression
# for consistent results
np.random.seed(42)
# nicer plots
plt.style.use('seaborn-v0_8-darkgrid')
return LogisticRegression, ScatterWidget, np, plt
@app.cell(hide_code=True)
def _(ScatterWidget, mo):
# drawing widget
widget = mo.ui.anywidget(ScatterWidget())
# run_button to run model
run_button = mo.ui.run_button(label="Run Logistic Regression", kind="success")
# stack controls
controls = mo.hstack([run_button])
return controls, run_button, widget
if __name__ == "__main__":
app.run()
|