Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from keras.models import load_model | |
from keras.preprocessing import image | |
from PIL import Image | |
st.title("Reconhecimento de LIBRAS") | |
def load_custom_model(): | |
return load_model('libras_model_v2.keras') | |
model = load_custom_model() | |
def load_labels(): | |
return np.load('labels.npy', allow_pickle=True) | |
labels = load_labels() | |
def predict_image(img): | |
img = img.resize((50, 50)) | |
img_array = image.img_to_array(img) / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
preds = model.predict(img_array) | |
pred_label = labels[np.argmax(preds)] | |
confidence = np.max(preds) * 100 | |
return pred_label, confidence | |
uploaded_file = st.file_uploader("Escolha uma imagem...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
img = Image.open(uploaded_file) | |
st.image(img, caption='Imagem carregada', use_column_width=True) | |
pred_label, confidence = predict_image(img) | |
st.success(f"Predição: **{pred_label}**") | |
st.info(f"Confiança: **{confidence:.2f}%**") |