Maria commited on
Commit
62fabfd
·
1 Parent(s): 73270ee
Files changed (1) hide show
  1. infer.py +3 -3
infer.py CHANGED
@@ -38,7 +38,7 @@ LoRA_path = 'new_model'
38
  CONTROLNET_MODE = {
39
  "Canny Edge Detection" : "lllyasviel/control_v11p_sd15_canny",
40
  "Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
41
- "HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
42
  "Midas depth estimation" : "lllyasviel/control_v11f1p_sd15_depth",
43
  "Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
44
  "Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
@@ -138,7 +138,7 @@ def prepare_controlnet_image(controlnet_image, mode):
138
  image = Image.fromarray(image)
139
 
140
  elif mode == "Pixel to Pixel":
141
- image = controlnet_image.convert('RGB')
142
 
143
  elif mode == "HED edge detection (soft edge)":
144
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
@@ -146,7 +146,7 @@ def prepare_controlnet_image(controlnet_image, mode):
146
 
147
  elif mode == "Midas depth estimation":
148
  depth_estimator = pipeline('depth-estimation')
149
- image = depth_estimator(controlnet_image)['depth']
150
  image = np.array(image)
151
  image = image[:, :, None]
152
  image = np.concatenate([image, image, image], axis=2)
 
38
  CONTROLNET_MODE = {
39
  "Canny Edge Detection" : "lllyasviel/control_v11p_sd15_canny",
40
  "Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
41
+ "HED edge detection (soft edge)" : "lllyasviel/control_v11p_sd15_softedge",
42
  "Midas depth estimation" : "lllyasviel/control_v11f1p_sd15_depth",
43
  "Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
44
  "Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
 
138
  image = Image.fromarray(image)
139
 
140
  elif mode == "Pixel to Pixel":
141
+ image = Image.fromarray(controlnet_image).convert('RGB')
142
 
143
  elif mode == "HED edge detection (soft edge)":
144
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
 
146
 
147
  elif mode == "Midas depth estimation":
148
  depth_estimator = pipeline('depth-estimation')
149
+ image = depth_estimator(Image.fromarray(controlnet_image))['depth']
150
  image = np.array(image)
151
  image = image[:, :, None]
152
  image = np.concatenate([image, image, image], axis=2)