Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Load some default model
|
10 |
+
MODEL_NAME = "bert-base-uncased"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
model = AutoModel.from_pretrained(MODEL_NAME, output_attentions=True)
|
13 |
+
|
14 |
+
def visualize_attention(text):
|
15 |
+
inputs = tokenizer(text, return_tensors="pt")
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# Grab attentions from output
|
19 |
+
attentions = outputs.attentions # List of (num_layers, batch, num_heads, seq_len, seq_len)
|
20 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
21 |
+
|
22 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
23 |
+
# Just visualize attention from last layer, first head
|
24 |
+
attn_matrix = attentions[-1][0][0].detach().numpy()
|
25 |
+
|
26 |
+
cax = ax.matshow(attn_matrix, cmap='viridis')
|
27 |
+
fig.colorbar(cax)
|
28 |
+
|
29 |
+
ax.set_xticks(range(len(tokens)))
|
30 |
+
ax.set_yticks(range(len(tokens)))
|
31 |
+
ax.set_xticklabels(tokens, rotation=90)
|
32 |
+
ax.set_yticklabels(tokens)
|
33 |
+
ax.set_title("Attention Map - Last Layer, Head 1")
|
34 |
+
|
35 |
+
return fig
|
36 |
+
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=visualize_attention,
|
39 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
40 |
+
outputs=gr.Plot(),
|
41 |
+
title="🧠 Transformer Attention Visualizer",
|
42 |
+
description="Visualizes the self-attention of the BERT model's last layer."
|
43 |
+
)
|
44 |
+
|
45 |
+
iface.launch()
|